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1 Submanifold

Definition 1.1. φ is a Cr map from U ∈ E to V ∈ F , U, V are open sets.
1. φ is a diffeomorphism if φ is a bijection from U to φ(U), φ is of class Cr and

φ−1 is also of class Cr.
2. If x ∈ U , φ is an immersion at x, if Dxφ is injective (≤).
3. If x ∈ U , φ is a submersion at x, if Dxφ is surjective (≥).

Theorem 1.1 (Inversion theorem). If φ is a Cr map from U ∈ E to V ∈ F , U, V are
open sets. If x ∈ U and Dxφ is a bijection, then φ is a diffeomorphism in a neighborhood
of x.

Definition 1.2. Let E be an affine space, (U,X) is a chart, when U is an open set in
E , X is a map into some open set in Rn and X is diffeomorphism from U to X(U).

X = (x1, · · · , xn) the coordinate of the chart, U the domain of the chart.

Theorem 1.2 (Immersion theorem). Let φ : O ↪→ F such that φ is an immersion at
x, there is a neighborhood U 3 x and a chart (V,X) at φ(x) with φ(U) ⊂ V , such that
X ◦ φ is a restriction of an affine injective map from U to Rn.
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Proof. Set f = X ◦ φ and treat f from Rp to Rn, f = (f1, · · · , fn). Then we define
ỹ = (y1, · · · , yp, yp+1, · · · , yn), y = (y1, · · · , yp) and F (ỹ) = (f1(y), · · · , fp(y), fp+1(y) +

yp+1, · · · , fn(y) + yn).

det
DF

Dỹ
(x1, · · · , xp, 0, · · · , 0) = det

Df

Dy
(x) 6= 0.

Then by inverse theorem, there is a neighborhood Ũ of x̃ = (x1, · · · , xp, 0, · · · , 0) such that
G : F (Ũ)→ Ũ is the inverse of F . Note that F (y1, · · · , yp, 0, · · · , 0) = f(y1, · · · , yp), hence
(y1, · · · , yp, 0, · · · , 0) = G ◦ f(y1, · · · , yp) for (y1, · · · , yp, 0, · · · , 0) ∈ U which equivalent to
(y1, · · · , yp) ∈ Ũ ∩ Rp =: U , which suggests f is injective.

Corollary 1.1. For smooth map φ : M → N , where M and N are manifolds, if φ is
an immersion at x ∈ M , there is a neighborhood U 3 x and a chart (V,X) at φ(x)
with φ(U) ⊂ V , such that the image of (X ◦ φ)|U is an open subset in Rp ⊂ Rn, where
p = dimM , n = dimN .

Theorem 1.3 (Submersion theorem). Let φ : O ↪→ F such that φ is an submersion
at x, there is a chart (U, Y ) at x such that φ ◦ Y −1 is a restriction of an affine surjective
map.

Proof. Similarly, consider F (y1, · · · , yn) = (f1(y), · · · , fp(y), yp+1, · · · , yn).

Theorem 1.4 (Constant rank theorem). Let φ : O ↪→ F , O open set in E , assume that
Dyφ has a constant rank for y in a neighborhood of x. There is a chart on a neighborhood
(U,X) of φ(x) and (V, Y ) of x, such that X ◦ φ ◦ Y −1 is (a restriction of) an affine map.

Definition 1.3. Submanifolds of affine spaces.
M ⊂ E is a submanifold if ∀x ∈ M , there exist a chart (U,X) at x such that

X(M ∩ U) is an open set of a vector sub-space in Rn.
The dimension of M is defined to be the dimension of X(M ∩ U)

dim(M) := dim(X(M ∩ U)).

Theorem 1.5.
1. Let M be a submanifold in E , if φ : O → F is a diffeomorphism, φ(M ∩ O) is a

submanifold.
2. Let φ be a submersion along φ−1(y), where φ : O → F 3 y. Then φ−1(y) is a

submanifold.
dimφ−1(y) = dimE − dimF .

3. Let φ be an immersion form O ⊂ E to F at x, then there exists an open set U 3 x
such that φ(U) is a submanifold.

dimφ(U) = dimE .
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Remark 1.1. If φ is diffeomorphism from U to V , if (W,X) is chart with W ⊂ V , then(
φ−1(W ), X ◦ φ

)
is a chart.

Definition 1.4. Tangent space of a submanifold.
Let curve c ∈ C∞ :]a, b[→ E ,

ċ(t0) := lim
t→t0

(
c(t)− c(t0)
t− t0

)
∈ E.

Let M be a submanifold in E , then

TxM = {ċ(0) for curves c : [a, b] 3 0 in E such that ∀t, c(t) ∈M, c(0) = x}.

Theorem 1.6.
1. Let φ be a diffeomorphism, and M a submanifold

Tϕ(x)φ(M) = Dxφ(TxM).

2. If M is an open set in an affine subspace of E , then TxM is the underlying vector
space of M .

3. If φ is a submersion along φ−1(y),

Txφ
−1(y) = ker(Dxφ), φ(x) = y.

4. If φ is an immersion at x,

Tϕ(x)φ(U) = ImDxφ.
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2 Manifold

Definition 2.1. All topological spaces X considered are
1. Hausdorff (séparé en français).
2. σ-compact: Countable union of compact sets.

Definition 2.2. Let M be a topological space, a chart on M is a part (U,X) where
1. U is an open set in M (called the domain).
2. X = (x1, · · · , xn) is a homeomorphism from U to an open set in Rn.

Definition 2.3. Two charts (U,X) and (V, Y ) are Ck compatible if Y ◦X−1 : X(U ∩
V )→ Y (U ∩ V ) is a Ck diffeomorphism.

Definition 2.4. f : U → R is a Ck function w.r.t. X if f ◦X−1 is Ck.

Proposition 2.1. If (U,X) and (V, Y ) are Ck compatible, f defined on U ∩ V . Then f

is Ck w.r.t. (U ∩ V,X) ⇐⇒ f being Ck w.r.t. (U ∩ V, Y ).

Proof.
f ◦X−1 = (f ◦ Y −1) ◦ (Y ◦X−1).

Definition 2.5. If M is a topological space. An atlas on M is a collection of charts
U = {(Ui, Xi)}i∈I such that (i)

⋃
Ui =M and (ii) all charts are pairwise Ck compatible.

Definition 2.6. The atlases U and V are Ck compatible if any chart of U is Ck

compatible with any chart of V . (Equivalently, U ∪ V is still an atlas.)

Definition 2.7. A Ck manifold is a topological space M (Hausdorff and σ-compact)
equipped with an equivalence class (w.r.t. Ck compatibility) of atlas.

Definition 2.8. A Ck chart (U,X) on a manifold is a chart which is compatible with any
atlas defining the manifold structure.

Proposition 2.2. If M is a manifold, an open set U in M is also a manifold.

Proposition 2.3. If M and N are manifolds, then M ×N is a manifold.

Definition 2.9. A function on Σ ⊂ M is Ck if for every x ∈ Σ, there exits a Ck chart
on M , (U,X) with x ∈ U , f ◦X−1 is Ck at X(x).

Example 2.1. If (U,X) is a chart, X = (x1, · · · , xn). x1, · · · , xn are the coordinates
functions on U , then xi are smooth functions on U .

Definition 2.10. Let M ϕ−→ N be a map between two (smooth) manifolds. The φ is smooth
at x ∈ M if for every smooth function f defined on a neighborhood of φ(x), then f ◦ φ is
smooth at x.
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Proposition 2.4. We have two notions of smooth map ϕ : U ⊂ Rn → V ⊂ Rn:
(i). ϕ smooth as map between manifolds.
(ii). ϕ is smooth as a classical notion.
We will prove these two notions coincide.

Proof. ⇐: Let f be a smooth function at ϕ(x), then f ◦ ϕ is smooth (composition of
smooth function).
⇒: Assume ϕ : U → V is smooth, we can find ϕ = (ϕ1, · · · , ϕp), where ϕi = xi ◦ ϕ is

the coordinate functions on V . Thus ϕi is smooth, then ϕ is smooth.

Lemma 2.1. If f1, · · · , fn are smooth functions M → R, g is a smooth function Rn → R,
then g(f1, · · · , fn) is a smooth function on M .

Proposition 2.5. φ is smooth at x, is equivalent to, there exits a chart (U,X) where U
a neighborhood of φ(x), X = (x1, · · · , xn) and xi ◦ φ is smooth on φ−1(U).

Proof. ⇒ is by definition.

f ◦ φ = (f ◦X−1) ◦ (X ◦ φ) = (f ◦X−1)(x1 ◦ φ, · · · , xn ◦ φ).

Proposition 2.6. M ϕ−→ N
ψ−→ W . If φ is smooth at x, ψ is smooth at φ(x), then ψ ◦ φ

is smooth at x.

Proof. Let f be a smooth function on a neighborhood of ψ◦φ(x), then g = f ◦ψ is smooth,
then g ◦ φ is smooth.

Proposition 2.7. φ :M → N is smooth at x, is equivalent to, there exists (U,X) a chart
at x and (U, Y ) at y = φ(x), such that Y ◦ φ ◦X−1 is a smooth map.

Proof. ⇐: Let f be a function smooth at φ(x), we shall show that f ◦ φ is smooth at x.

f ◦ φ ◦X−1 = (f ◦ Y −1) ◦ (Y ◦ φ ◦X−1)

is smooth, hence f ◦ ϕ is smooth.
⇒: Let g be a function smooth at φ(x) ∈ Y .

g ◦ (Y ◦ φ ◦X−1) = (g ◦ Y ) ◦ φ ◦X−1,

is smooth at X(x).

Exercise 2.1. φ : M → N is smooth at x, is equivalent to, for any (U,X) a chart at x
and (U, Y ) at y = φ(x), we have Y ◦ φ ◦X−1 is a smooth map.

Proof. Just by changing of charts.
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Exercise 2.2. N is a submanifold of Rn, prove that i : N ↪→ Rn is a smooth map.

Proof. Since N is a submanifold of Rn, for any x ∈ N , there is a chart (U,X) such that
X(U ∩N) = Rp ⊂ Rn. Note that (U ∩N,X|N ) is a chart on N as a manifold.

Thus, i = X−1 ◦X|N around x is smooth.

Exercise 2.3. M ×N p−→M is a smooth map.

Proof. For any point (x, y) ∈M ×N , there is a chart (U ×V,X) around (x, y) and a chart
(V, Y ) around x ∈M , where Y (m) = X(m, 0) for any m ∈M .

Hence Y ◦p◦X−1 : Rm+n → Rm is a projection, (x1, · · · , xm+n) 7→ (x1, · · · , xm), which
is smooth. Then p is smooth.

Exercise 2.4. If (U,X) is a chart, then X and X−1 are both smooth.

Proof. For any smooth function f around X(x) ∈ Rn, we need to show that f ◦ X is
smooth around x ∈ U . We consider the chart (U,X), and we have (f ◦X) ◦X−1 = f is
smooth on X(U).

For any smooth function g around x ∈ U , we need to show that g ◦ X−1 is smooth
around X(x) ∈ X(U). Since g is smooth around x, there is a chart (V, Y ) around x such
that g ◦Y −1 is smooth around Y (x). Now g ◦X−1 = (g ◦Y −1)◦(Y ◦X−1) is a composition
of smooth maps, hence smooth.

Definition 2.11. ϕ : U ⊂ M → V ⊂ N , ϕ is a diffeomorphism if and only if ϕ is
bijective, ϕ is smooth and ϕ−1 as well.

X is a diffeomorphism if (U,X) is a chart.

Definition 2.12. ϕ is a immersion at x, is equivalent to, there exist (U,X) and (V, Y )

charts at x and ϕ(x) such that Y ◦ ϕ ◦X−1 is an immersion.
It is also equivalent to, for any (U,X) and (V, Y ) charts at x and ϕ(x), we have

Y ◦ ϕ ◦X−1 is an immersion.

Definition 2.13. Same definition for the submersion.

Remark 2.1. ξ is an immersion from U ⊂ Rn to V ⊂ Rn, then φ0 ◦ ξ ◦ φ1 is also an
immersion if φ0 and φ1 are diffeomorphisms.

Example 2.2. M ×N p−→M is a submersion. M →M × x ⊂M ×N is an immersion.

Definition 2.14. V a submanifold of a manifold M if ∀x ∈ V , there is a chart (U,X)

at x ∈M such that X(V ∩ U) is a submanifold.

Definition 2.15. ϕ :M → N is an embedding if
(i) ϕ is an injective immersion.
(ii) ϕ is an homeomorphism onto its image.
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Example 2.3. Topologist’s sine curve.
ϕ : (−∞, 0]→ R2 is injective and immersion but not an embedding.

Exercise 2.5. If M is compact and ϕ is an injective immersion, then ϕ is an embedding.

Proof. ϕ brings a closed set onto a closed set in ϕ(M).

Definition 2.16. We say ϕ is proper if ϕ−1(K) is compact for any compact set K.

Example 2.4. x 7→ arctanx is not proper.

Proposition 2.8. ϕ is an injective immersion and ϕ is proper, then ϕ is an embedding.

Proof. We will show that ϕ :M → N brings closed set to closed set.
First there is a collection of compact sets {Kn} ofN withKn ⊂ Kn+1, such that ∪Kn =

N . Then since ϕ is proper, ϕ−1(Kn) are compact and M = ϕ−1(N) = ϕ−1(∪Kn) =

∪ϕ−1(Kn).
For any closed set C in M , there is a positive integer m such that C ⊂ ϕ−1(Km),

hence ϕ(C) ⊂ Km. We show that ϕ(C) = ϕ(C).
For any y ∈ ϕ(C), there is a sequence {xn} ⊂ C such that y = limϕ(xn). Since C

is compact, there is a subsequence {xkn} such that they converge to x0 ∈ C. By the
continuity of ϕ, we have

ϕ(x0) = limϕ(xkn) = y,

hence y ∈ ϕ(C), which shows that ϕ(C) ⊂ ϕ(C).

Exercise 2.6. If ϕ is an embedding then ϕ(M) is a submanifold, and ϕ is a diffeomor-
phism M → ϕ(M).

Proof. By the immersion theorem, there exists W ⊂ M , W ∈ V (y) with ϕ(y) = x such
that ϕ(W ) is a submanifold.

We can always assume by taking W smaller that ϕ(W ) ⊂ U . Then we know that
ϕ(W ) = ϕ(M) ∩ O, where O open in N . Then we have ϕ(W ) = ϕ(M) ∩ O ∩ U .
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3 Examples

3.1 Projection Space

Definition 3.1. Let V be a vector space with dimV < ∞. A line L is a vector space in
V with dimL = 1. V is a vector space over any filed K (here K is R or C). We define the
Projective Space

P(V ) = {L : L lines in V }.

1. Show that P(V ) is in bijection with V \ {0}/K∗.

Proof. Consider ϕ : V \{0}/K∗ → P(V ), [v] 7→ Kv. Then it suffices to show ϕ is bijection,
which is obvious.

2. Define a topology on P(V ).

Definition. U is open in P(V ) iff π−1(U) is open, here π : V \ {0} → P(V ).

2.1 P(V ) is Hausdorff?

Proof. For any two different points L,M ∈ P(V ), we intersect L,M with S(V ) to get
x1, x2, y1, y2. Then we can find r > 0 such that Br(x1), Br(x2), Br(y1), Br(y2) do not
intersects each other. Hence we consider the cones generated by Br(x1), Br(x2) and by
Br(y1), Br(y2), with origin being vertex, calling Cx and Cy. Then Cx\{0} and Cy \{0} are
open in V \ {0} and they don’t intersect. Thus, we find two separate open sets π(Cx \ {0}
and π(Cy \ {0}) in P(V ) which contains L and M respectively.

2.2 P(V ) is compact.

Proof. We know S(V ) is compact. For any open covering U = {Ui}i∈I of P(V ), we have
π−1(U ) = {π−1(Ui)}i∈I is an open covering of V \ {0}. Moreover, π−1(U ) ∩ S(V ) =

{π−1(Ui) ∩ S(V )}i∈I is an open covering of S(V ). Since S(V ) is compact, we have a finite
subset J ⊂ I with {π−1(Ui)∩S(V )}i∈J being an open sub-covering of S(V ), hence {Ui}i∈J
is an open sub-covering of P(V ).

However, this just the proof of continuous map maps a compact set to a compact
set.

3. Projective chart.

Definition. Let H be a hyperplane in V , let

UH = {L ∈ P(V ) : L⊕H = V }.

π−1(UH) = V \H is open, hence UH is open.
Ui = {[x1, · · · , xn] : xi 6= 0}, φi : [x1, · · · , xn] 7→

(
x1
xi
, · · · , xnxi

)
∈ Rn−1.

Transition map of U1 → U2 maps (v1, · · · , vn−1) to ( 1
v1
, v2v1 , · · · ,

vn−1

v1
).
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Exercise 3.1. Prove that Ui → Kn−1 is a homeomorphism.

Given a hyperplane H in V , H = kerω, let

UH = {L : ω|L 6= 0} = {L : L⊕H = V }.

We fix D ∈ UH , and define φH : UH → H as follows. For any L ∈ UH , let uL be such
that ω(UL) = 1, then we define ΦH,D(L) = uL − uD.

Now we calculate Ψ = ΦH1,D1 ◦ Φ−1
H0,D0

.

v 7→ l = u0 + v 7→ u0 + v

ω1(u0 + b)
− u1.

We have an one-one correspondence ϕ:

P(V )→ {sym projector of tr 1}.

Now we want to understand TLϕ. If ϕ is an injective immersion, and since P(V ) is compact,
we say ϕ is an embedding.

We choose a hyperplane H and the unit normal vector u0, then we consider these as
a chart.

H
Φ−1

−−→ P(V )
φ−→ {sym projector of tr 1}.

w 7→ L′ 7→ pw.

The first formula is
Φ−1(w) = w + u0,

and the second formula is, by Pythagoras theorem,

PL′(a) =
〈a, v〉
〈v, v〉

v.

where v is a vector in L′. Then we have the formula for ψ = ϕ ◦ Φ−1,

ψ(w)(a) =
〈a, u0 + w〉

〈u0 + w, u0 + w〉
(u0 + w).

Set w = th, for h ∈ H, we can prove that

D0ψ(h)(a) = 〈a, h〉u0 + 〈a, u0〉h.

Then we have
D0ψ(h)(u0) = h 6= 0,

for h 6= 0, which shows that D0ψ is an injection, hence ψ is an immersion at 0. Hence ϕ
is an immersion at L′, with the arbitrariness of L′, ϕ is an immersion.
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3.2 Grassmannian manifold

Definition 3.2. Grassmannian manifold

Grk(V ) = {P ⊂ V : P vector space with dimP = k}.

3.2.1 Affine viewpoint

We fix Q as an n−k dimension subspace, and set UQ = {P : P ⊕Q = V }. We fix P ′ ∈WQ

and for any P ∈ UQ, we can find a linear function f : P → Q such that the graph of f is
P ′, i.e. by setting F (x) = x+ f(x), x ∈ P , we have ImF = P ′.

Remark 3.1. If we want a canonical function f , we can choose P ′ as the perpendicular
direct complement of Q.

We can prove that F is a bijection. First F is linear, hence it suffices to show that F
is injective. If there exists x ∈ P s.t. F (x) = 0 ∈ P ′ ⊂ V , i.t., x + f(x) = 0. We have
f(x) = −x ∈ P , hence in P ∩Q = {0}, i.e. x = 0.

We can show that {F linear : F−1 : P ′ → P, rankF = k} is one-to-one with UQ.
We define GP = fP ◦ F−1

P : P ′ → Q, choose a basis {e1, · · · , ek} of P ′ and we say that
(GP (e1), · · · , GP (ek)) gives the coordinate of the P w.r.t. FP .

3.2.2 Matrix viewpoint

We fix a metric on V , p is projector if p2 = p, then V = ker p⊕ Im p and dim(Im p) = tr p,
(Im p)⊥ = ker p. We say p is symmetric if 〈p(x), y〉 = 〈x, p(y)〉, of course a projector is
symmetric.

Grk(V )←→ Gk = {symmetric endomorphism (i)p2 = p, (ii) tr p = k.}.

We first prove that this is a one-one correspondence. The only thing we need to show
is that the map is an injection. For p and p′ having the same ker with p, p′ ∈ Gk, then
there is an invertible matrix Q such that p′ = Q−1pQ and ker p is invariant under Q.

Then for x ∈ ker p, then Qx ∈ ker p, hence p′x = Q−1pQx = 0, which shows that
x ∈ ker p′. For x ∈ Im p, we have Qx ∈ Im p, hence p′x = Q−1pQx = Q−1Qx = x. Thus
p′ = p.

Let W be the space of symmetric endomorphism of V , then dimW is n(n+1)
2 , define

Gk = {p : p2 = p, tr p = k}. Gk is defined by equation W Φ−→W ×R, f 7→ (f2−f, tr f−k),
Gk = Φ−1(0).

Question: understand rankΦ closed to p0 = Ik.
We have the basis of W as Eij = 1

2(δij + δji), 1 ≤ i ≤ j ≤ n. Consider the direction
derivative respect to Eij at p0 = Ik:

∂Φ

∂Eij
=

(
lim

(Ik + tEij)
2 − (Ik + tEij)− I2k + Ik

t
, lim

tr(Ik + tEij)− tr Ik
t

)
= (IkEij + EijIk − Eij , trEij) .
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Thus there are five cases for i, j:
(1) 1 ≤ i < j ≤ k, in which situation, ∂Φ

∂Eij
= (Eij , 0).

(2) 1 ≤ i = j ≤ k, in which situation, ∂Φ
∂Eij

= (Eij , 1) = (Eii, 1).
(3) 1 ≤ i ≤ k < j ≤ n, in which situation, ∂Φ

∂Eij
= (O, 0).

(4) k < i < j ≤ n, in which situation, ∂Φ
∂Eij

= (−Eij , 0).
(5) k < i = j ≤ n, in which situation, ∂Φ

∂Eij
= (−Eij , 1) = (−Eii, 1). Only the third

case doesn’t contribute to the rank DIkΦ. Thus rank(DIkΦ) =
n(n+1)

2 − k(n − k), hence
dimKer(Φ) = k(n− k).
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4 Partition of unity

Definition 4.1. Let X be a topological space, f continuous on X

Supp(f) := {x : f(x) 6= 0} =
⋂

f=0 on X\F,F closed

F.

Example 4.1. There is a function f : R→ R smooth and
(i) Supp(f) ⊂]− 1, 1[,
(ii) f ≡ 1 on a neighborhood of 0,
(iii) f is even,
(iv) 0 ≤ f ≤ 1.

Lemma 4.1. Let X be a manifold, K a compact set, U open set, then there exists an
open set V ⊂ U with K ⊂ V ⊂ U and there is a function ϕ smooth on X s.t.

(i) Supp(ϕ) ⊂ U ,
(ii) ϕ ≡ 1 on V ,
(iii) 0 ≤ ϕ ≤ 1.

Proof. First case K = {x}. We can find a chart (O, ϕ) such that O ⊂ U and ϕ(O) ⊃
B(0, 1) and ϕ(x) = 0. We define Xx on X by

Xx(y) =

0, if y /∈ O;

ξ
(
‖ϕ(y)‖2

)
, if y ∈ O.

We prove that Xx is smooth: Xx|O is smooth by definition; if y /∈ O, we know that ∃V
around y such that V ∩ ϕ−1(B(0, 1)) = ∅, then Xx = 0 on V .

By conclusion Xx ≡ 1 on V (x) (on a neighborhood of x) with Supp(Xx) ⊂ O ⊂ U .
Let K be a compact set, K ⊂ U . For any x ∈ K, we choose Vx ∈ V (x) and Xx such

that Supp(Xx) ⊂ Vx ⊂ U , Xx ≡ 1 on Wx ∈ V (x). Now {Wx}x∈K is an open covering of
K, hence we have a finite covering Wx1 , · · · ,Wxn .

Define ψ0 =
∑
Xxi , then

Supp(ψ0) ⊂ V :=

n⋃
i=1

Vxi ⊂ U.

Moreover, ψ0 ≥ 1 on
n⋃
i=1

Wxi ⊃ K.

Now we need to cut off ψ0, define ψ = f ◦ ψ0, where f : [0,∞[→ [0, 1] smooth such
that

f(x)

≡ 0, on [0, 12 ]

≡ 1, on [1,∞[
.
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Definition 4.2. Let X be a topology space, let {Wα}α∈A be a covering of X. A partition
of unity is a collection of function {Xα}α∈A such that

(i) Supp(Xα) ⊂Wα, Xα(X) ⊂ [0, 1].
(ii) Given x in X, only finitely many α are such that Xα(x) 6= 0.
(iii)

∑
α∈A

Xα = 1.

Definition 4.3. A covering {Ui}i∈I is locally finite, iff forallx ∈ X, ∃V ∈ V (x) such
that {i : Ui ∩ V 6= ∅} is finite.

Definition 4.4. Let {Ui}i∈I be a covering, a covering {Wj}j∈J is a subcovering if for any
j ∈ J , there is i ∈ I such that Wj ⊂ Ui.

Proposition 4.1. Let X be a topological space such that X is locally compact and σ-
compact, then for any {Ui} covering, there is a locally finite subcovering.

Theorem 4.1 (Partition of unity). Let X be a manifold and {Wα}α∈A be a locally finite
covering, then there is a partition of unity for Wα.

Theorem 4.2 (Whitney). Let M be a manifold (compact), then there exists N and an
embedding of M into RN .

Proof. Let (Ui, ϕi)i=1,··· ,p be a finite atlas for M . Assume dimM = n, here we will set
N = pn+ p.

We extend ϕi : Ui → Rn, 0 outside Ui. Now this is not continuous.
Let Vi ⊂ Vi ⊂ Ui be open sets with ∪Vi = M . For example, set Ki = M \

⋃
j ̸=i

Ui and

Vi a neighborhood of Ki.
Let ξi be a smooth function with Supp ξi ⊂ Ui and ξi ≡ 1 on Vi. Define

Φ = (ξ1ϕ1, · · · , ξpϕp, ξ1, · · · , ξp)

a smooth function.
Let prove Φ is injective, assume that Φ(x) = Φ(y). There exists i0 such that ξi0(x) 6= 0

(because x ∈ Vi0 , hence ξi0(y) 6= 0, hence y ∈ Ui0 . Therefore

ξi0(x)ϕi0(x) = ξi0(y)ϕi0(y),

hence ϕi0(x) = ϕi0(y), hence x = y.
Let’s prove that Φ is an immersion. Let x ∈ X, there is i0, x ∈ Vi0 , then Φ|Vi0 =

(· · · , ϕi0 , · · · ) is an immersion.

Remark 4.1.
Whitney: every compact manifold of dimension n can be embedded in R2n+1, immersed

in R2n.
Source: Milnor, Topology from the differential viewpoint.
Cohen: immersed in R2n−a(n), where a(n) = #{1 in the binary system decomposition of n}:

4 = 100...
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5 Cotangent space

Definition 5.1. Differential of a function.
Let f : M → R smooth function at x. We say “dxf = 0” if the following equivalent

statement are true
(i) ∃(U,X) at x such that dX(x)(f ◦X−1) = 0.
(ii) ∀(V, Y ) at x, dY (x)(f ◦ Y −1) = 0.

Proof.
f ◦ Y −1 = (f ◦X−1) ◦ (X ◦ Y −1).

dY (x)f ◦ Y −1 =
(
dX(x)(f ◦X−1)

)
◦DY (x)ψ.

Proposition 5.1. If f = g on a neighborhood of x, then dx(f − g) = 0.

Exercise 5.1. f : U ⊂ Rn → R, dxf = 0 ⇐⇒ f = f(x) +
k∑
i=1

εi · f2i , where fi(x) =

0, εi = ±1.

Proof. This reminds me the famous Morse Lemma: If x is a non-degenerate critical point
for f , then there is a local coordinate system (y1, · · · , yn) in a neighborhood U of x with
yi(x) = 0 such that

f = f(x)− (y1)2 − · · · − (yλ)2 + (yλ+1)2 + · · ·+ (yn)2,

where λ is the index of f at x.
However, here x is a critical point of f but not necessarily non-degenerate. Thus we

may need to make some minor modification of the proof of Morse lemma.
Without loss of generality, we set x = 0 and f(x) = 0. Here we introduce a lemma:

Lemma 5.1. Let f be a smooth function in a convex neighborhood V of 0 in Rn, with
f(0) = 0. Then

f(x1, · · · , xn) =
n∑
i=1

xigi(x1, · · · , xn),

for some suitable smooth function gi defined in V , with gi(0) = ∂f(0)
∂xi

.
Proof.

f(x1, · · · , xn) =
∫ 1

0

df(tx1, · · · , txn)
dt

dt =

n∑
i=1

xi

∫ 1

0

∂f

∂xi
dt.

With this lemma, we could find gi with gi(0) =
∂f
∂xi

= 0. Applying again this lemma
to the gi, then we have hij s.t.

gi(x1, · · · , xn) =
n∑
j=1

xjhij(x1, · · · , xn).
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Hence it follows that

f(x1, · · · , xn) =
∑
i,j

xixjhij(x1, · · · , xn) =
∑
i,j

(
xi + xjhij

2

)2

−
(
xi − xjhij

2

)2

.

Exercise 5.2. f : U ⊂ Rn → R, dxf = 0 ⇐⇒ f = f(x) +
k∑
i=1

εi · fi · gi, where fi(x) = 0,

gi(x) = 0, εi = ±1.

Proof. aaa

Let U be a neighborhood of x, let

E (U) = {f : smooth on U}.

F (U) = {f : smooth on U and “dxf = 0”}.

Let’s consider the vector space E (U)/F (U).

Proposition 5.2. E (U)/F (U) does not depend on U .

Let V ⊂ U and E (U)→ E (V ) is the restriction. We claim that

Proposition 5.3. Φ : E (U)/F (U)→ E (V )/F (V ) is an isomorphism as a vector space.

Proof.
(i) This is a linear map.
(ii) Φ is injective.
(iii) Let f be a function on V , let h be a smooth function defined on M with h ≡ 1

on a neighborhood of x and Supph ⊂ V . We define f̃ = hf on V , f̃ = 0 outside V . Then
f̃ = f on a neighborhood of x, then “d(f̃ − f) = 0”, f̃ = f in E (V )/F (V ). Now f̃ is the
restriction of a function defined on U , thus Φ(f̃) = f , which shows that Φ is surjective.

Definition 5.2. Cotangent space T ∗
xM = E (U)/F (U).

Definition 5.3. Given f defined on U ∈ V (x), dxf ∈ T ∗
xM is the projection of f in

E (U)/F (U).

Remark 5.1. Check that “dxf = 0” ⇔ dxf = 0.

Proposition 5.4.
(i) dx : f → dxf is a linear map.
(ii) dx(fg) = f(x)dxg + dxfg(x).

Proof. Set h = fg − f(x)g − g(x)f , we just want to prove that dxh = 0.
Let us find a chart (U,X), f̃ = f ◦X−1, g̃ = g ◦X−1 and h̃ = h◦X−1. Let x0 = X(x),

then
h̃ = f̃ g̃ − f̃(x0)g̃ − g̃(x0)f̃ ,

then by the Leibnitz rule, dx0 h̃ = 0.
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Proposition 5.5. If (U,X) is a chart at x, X = (x1, · · · , xn), then (dxx1, · · · , dxxn) is a
basis of T ∗

xM .
Moreover, if f = F (x1, · · · , xn), then

dxf =
∑
i

∂F

∂xi
dxxi.

Proof. Setting y0 = X(x), λi = ∂F
∂xi

, let us consider

f −
∑
i

λixi = h,

Claim 1, dxh = 0.
Let h̃ = h ◦X−1, f̃ = f ◦X−1 = F and x̃i = xi ◦X. Then

h̃ = F − ∂F

∂xi
x̃i,

by differential calculus dx0 h̃ = 0.
Then dxf =

∑
i
λidxxi, hence f ∈ Span(dxx1, · · · dxxn)

Claim 2, dxxk are independent.
Assume that

∑
i
λidxxi = 0, iff dx(

∑
i
λidxxi) = 0, iff dx(

∑
i
λidxx̃i = 0, iff λi = 0 for

any i.

Definition 5.4. Partial derivatives.
If f is smooth around x, (U,X) is a chart,

dxf =

n∑
i

∂f

∂xi
dxxi,

we just says ∂f
∂xi

= ∂F
∂xi

.

Exercise 5.3. dxλ = 0 if λ is constant on V (x).

Definition 5.5. Tangent space.
TxM is the dual of T ∗

xM , elements of TxM are called tangent vectors.
If (X,x1, · · · , xn), we have a basis

(
∂
∂x1

, · · · , ∂
∂xn

)
of TxM given as the dual basis of

(dxx1, · · · , dxxn).

Remark 5.2. Note that ∂
∂xi

does not only depend on xi, but also on the whole choice of
basis.

Example 5.1. Let c be smooth curve at x in M ,

c :]− 1, 1[→M, c(0) = x.

the tangent vector to c at x is defined by

〈ω | ċ(0)〉 = ω (ċ(0)) =
d

dt

∣∣∣
t=0

(f ◦ c),

for any ω in T ∗
xM and for any f such that dxf = ω.
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Exercise 5.4. If dxf = dxg, then d
dt

∣∣
t=0

(f ◦ c) = d
dt

∣∣
t=0

(g ◦ c).

Proposition 5.6. Let X = (x1, · · · , xn) be coordinates at x, let X ◦ c = (c1, · · · , cn), then

ċ(0) =

n∑
i

ċi(0)
∂

∂xi
.

Definition 5.6. Let γ0, γ1 be two curves through x, we define γ0 and γ1 are tangent at x
iff γ̇0(0) = γ̇1(0).

Proposition 5.7. Let φ : M → N be smooth, if γ0 and γ1 are tangent at x, then φ ◦ γ0
and φ ◦ γ1 are tangent at φ(x).

Proof. Let X be coordinates around x,

γ̇0(0) = γ̇1(0) ⇐⇒ ˙(X ◦ γ0)(0) = ˙(X ◦ γ1)(0).

Let Y be coordinates around y = φ(x), we need to show

˙(φ ◦ γ0)(0) = ˙(φ ◦ γ1)(0),

which is equivalent to
˙(Y ◦ φ ◦ γ0)(0) = ˙(Y ◦ φ ◦ γ0)(0),

⇐⇒ ˙(Y ◦ φ ◦X−1 ◦X ◦ γ0)(0) = ˙(Y ◦ φ ◦X−1 ◦X ◦ γ0)(0).

We write ψ for Y ◦ φ ◦X−1 and ci = X ◦ γi.
There ˙(ψ ◦ ci)(0) = DX(x)ψ (ċi(0)), but since γ̇0(0) = γ̇1(0), then ċ0(0) = ċ1(0, then

DX(x)ψ (ċ0(0)) = DX(x)ψ (ċ1(0)) .

Definition 5.7. Let φ be smooth from M to N . Then Txφ is the unique linear map
TxM → Tϕ(x)N such that Txφ (ċ(0)) = ˙(φ ◦ c)(0).

Sometimes Txφ is written as Dxφ.

Proposition 5.8.
(i) dx(f ◦ φ) = dϕ(x)f ◦ Txφ.
(ii) Tx(φ ◦ ψ) = Tϕ(x)φ ◦ Txψ.
(iii) If (x1, · · · , xp) are coordinates at x, (y1, · · · , yn) are coordinates at φ(x), then the

matrix of Txφ, in ∂
∂xi
, ∂
∂yj

is of a coefficients ∂ϕj
∂xi

, where Y ◦ φ = (φ1, · · · , φn).

Theorem 5.1.
(i) φ is a diffeomorphism on V (x) iff Txφ is invertible (just by local immersion theo-

rem).
(ii) φ is an immersion iff Txφ is injective.
(iii)φ is an submersion iff Txφ is surjective.
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6 Differential forms

6.1 1-form.

Let T ∗M =
⊔
x∈M

T ∗
mM .

Definition 6.1. A differential form of degree 1 is ω : M → T ∗M such that ω(m) ∈
T ∗
mM .

Example 6.1.
(i) If f is function, df(m) = dmf is a differential form. Such a form is called exact.
(ii) The space of differential 1-forms is a vector space.
(iii) If α is a 1-form, f a function on M , then f ◦ α : m 7→ f(m) · αm is a 1-form.
(iv) If (x1, · · · , xn) are coordinates in M on V (x), then

ω =
n∑
i=1

ωidxi,

on a neighborhood of x, where ωi are functions.

Definition 6.2. ω is a smooth 1-form if in every x in M we can find (x1, · · · , xn) on a
neighborhood of x, such that ω =

n∑
i=1

ωidxi with ωi smooth functions.

Remark 6.1.
(i)If f is smooth, then

df =
∑
i

∂f

∂xi
dxi,

with ∂f
∂xi

are smooth, hence df is a smooth 1-form.
(ii) If ω =

∑
i
ωidxi with ωi smooth, then for any coordinates (y1, · · · , yn), we have

ω =
∑
i

ηidyi,

with ηi smooth. Since ηi =
∑
j
ωj

∂xj
∂yi

.

Proposition 6.1. The space Ω1(M) of smooth differential forms on M is a vector space,
and it is also a modules over C∞(M).

Integration of 1-forms

Let ω ∈ Ω1(M), let c be a curve [a, b]→M , we define∫
c
ω :=

∫ b

a
ω (ċ(t)) dt.

If φ is an increasing diffeomorphism [a, b]→ [a, b], then∫
c◦ϕ

ω =

∫
c
ω.
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If φ is decreasing,
∫
c◦ϕ ω = −

∫
c ω.

When is a form exact? (at least locally).
ω =

∑
ωidxi and ω = df , then ∂ωi

∂xj
=

∂ωj

∂xi
.

We will introduce Ω2(M) forms of degree 2.

d : Ω1(M)→ Ω2(M),

such that d ◦ d(f) = 0.

6.2 Review of linear algebra

Let E be a vector space of finite dimension m, an exterior form of degree p is α, such
that α : Ep → K,

(i) α is multilinear.
(ii) α(uσ(1), · · · , uσ(p)) = (−1)ε(σ)α(u1, · · · , up), σ ∈ Sp.

Antisymmetric 2-forms, α(u, v) = −α(v, u).
It is enough to check (ii) when σ is a transposition.
Facts: we denote by

∧p(E∗) = {the space of exterior p forms},
∧p(E∗) is a vector

space.
∧∗(E∗) =

⊕∞
p=0

∧p(E∗). By convention
∧0(E∗) = R.

Remark 6.2. Map E → F is a subset of E × F , ∅→ F , subset of ∅× F . Note that the
empty set have the subset, itself!

If (e1, · · · , em) is a basis of E, and (e1, · · · , em) the dual basis of E∗. If I = (i1, ·, ip)
with i1 < · · · < ip then ωI defined byωI(ei1 , · · · , eip) = 1,

ωI(ej1 , · · · , ejp) = 0, otherwise.
.

defines a basis of
∧p(E∗).

dim
∧p(E∗) = 0 if p > m, dim

∧p(E∗) = dim
∧m−p(E∗).

Exterior product

Facts: there is bilinear form
∧p(E∗) ×

∧q(E∗) →
∧p+q(E∗), α, β → α ∧ β, which enjoys

the following properties
(i) associativity, (α ∧ β) ∧ γ = α ∧ (β ∧ γ).
(ii) α ∧ β = (−1)degα·deg ββ ∧ α.
(iii) normalisation ωI = ei1 ∧ · · · ∧ eip .
Formula:

α ∧ β(u1, · · · , up+q) =
∑

σ∈Sp+q

(−1)ε(σ)α(uσ(1), · · · , uσ(p))β(uσ(p+1), · · · , σ(p+ q)),

for p = q = 1, (α ∧ β)(u, v) = α(u)β(v)− α(v)β(u).

20



Interior product

Bilinear form E ×
∧p(E∗)→

∧p−1(E∗), u, ω 7→ iuω,

iuω(v1, · · · , vp−1) = ω(u, v1, · · · , vp−1).

Exercise 6.1.
iu(α ∧ β) = iuα ∧ β + (−1)degαα ∧ iuβ.

Proof. We can prove this just for orthonormal basis.

Induction

A : E → F linear, A∗ :
∧p(F ∗)→

∧p(E∗),

(A∗ω)(u1, · · · , up) := ω(Au1 , · · · , Aup).

Proposition 6.2.
(i) A∗(α ∧ β) = (A∗α) ∧ (A∗β).
(ii) A∗ ◦B∗ = (B ◦A)∗.
(iii) A∗(iA(u)α) = iu(A

∗α).

6.3 Differential forms on manifolds

Motivation: if (X,U) is a chart, ω is a 1-form on U , ω =
m∑
i=1

ωidxi.

dXω :=
∑
i<j

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ∧ dxj ,

a 2-form on U . If ω = df , then dXω = 0.
If (X,U), (Y, V ) are two charts, then

dXω = dY ω, on U ∩ V,

so we can well-define dω.
Converse is almost true: if dω = 0, then there is f such that ω = df (depends on the

shape of manifold).∧p(M) :=
⊔
m

∧p(T ∗
mM), a differential form ω :M →

∧p(M) such that for all m ∈M ,

ωm ∈
∧p(T ∗

mM).
How to define smooth differential forms?
Observe that if (U,X) is a chart

dmxI := dmxi1 ∧ · · · dmxip , where I = (i1, · · · , ip) with i1 < · · · < ip

is a basis of
∧p(T ∗

mM). Every form satisfies

ω =
∑
I

ωXI dxI ,

on the chart.
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Definition 6.3. ω is smooth on M iff for every x ∈M , there is a chart (U,X) at x such
that ∀I, ωXI is smooth.

Exercise 6.2. If ω is smooth, then for every chart (V,X), ωXI is smooth.

Then we define α ∧ β by

(α ∧ β)m := αm ∧ βm, m ∈M.

(α+ β)m = αm + βm. k ∧ α := kα, for k ∈ R and α ∈
∧p(E∗).

Proposition 6.3. If α and β is smooth, then α ∧ β is smooth.

Convention:
∧0(M) =

⊔
m

(∧0(TmM
∗)
)
=
⊔
m
(R), hence a 0-form is a function.

Notation:
Ωp(M) = {vector space of C∞p-form on M}.

hence Ω0(M) = C∞(M), and the wedge product

Ωp(M)× Ωq(M)→ Ωp+q(M).

Exterior differential

Definition 6.4. A linear map Ωp(M)
d−→ Ωp+1(M), ∀p, is an exterior differential if

(i) if α = 0 on V (x), then dα = 0 on V (x).
(ii) d(fdα) = df ∧ dα.
(iii) df is the usual differential of a function.

Theorem 6.1. On every manifold, there exist a unique exterior differential.

Proof.
Uniqueness part:

Proposition 6.4. If d is an exterior differential, then

d(fdg1 ∧ · · · ∧ dgp) = df ∧ dg1 ∧ · · · ∧ dgp,

where f, g1, · · · , gp are functions.

Let us prove the proposition by induction on p. For p = 1, it is just definition (ii).
Assume this is true for p− 1, then

dg1 ∧ · · · ∧ dgp = d(g1dg2 ∧ · · · ∧ dgp).

Then
d(fdg1 ∧ · · · ∧ dgp) = d (fd(g1dg2 ∧ · · · ∧ dgp)) = df ∧ dg1 ∧ · · · ∧ dgp.

Proof is complete.

Corollary 6.1. Uniqueness of an exterior differential.
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If α =
∑
I

fIdxi1 ∧ · · · ∧ dxip , then dα =
∑
I

dfI ∧ dxi1 ∧ · · · ∧ dxip , which indicates dα is

uniquely determined.
Existence part:

Let (U,X) be a chart. Let us define dX on Ω∗(U) =
dimM⊕
p=0

Ωp(U) by

dX(
∑
I

ωIdxI) :=
∑
I

dωI ∧ dxI .

We now prove that dX is an exterior differential. (i) and (iii) are obvious. For (ii), we
need to prove dX(fdω) = df ∧ dXω.

Let ω =
∑
I

ωIdxI ,

dX(fdXω) =
∑
I

dX (fdωI ∧ dxI)

=
∑
I

∑
j

dX
(
f
∂ωI
∂xj

dxj ∧ dxI
)

=
∑
I

∑
j

d(f
∂ωI
∂xj

) ∧ dxj ∧ dxI

=
∑
I

∑
j

∂ωI
∂xj

df ∧ dxj ∧ dxI +
∑
I

∑
j

∑
i

f
∂2ωI
∂xi∂xj

dxi ∧ dxj ∧ dxI

=
∑
I

df ∧ dωI ∧ dxI + 0

= df ∧ dXω.

Assume that (U,X) and (V, Y ) are charts then if f is defined on U∩V , then dX(f |U∩V ) =

dY (f |U∩V ).
The existence follows, let ω be a p-form, we define dω in the following way. Let (U,X)

be a chart around V (x),
dω|U := dX(ω|U ),

this way we have defined coherently dω.

Proposition 6.5. d2α = 0.

Proof. Let f ≡ 1, then
d2α = d(fdα) = df ∧ dα = 0.

Assume smooth map F : M → N , in particular, TmF : TmM → TF (m)N , we define
F ∗ : Ω(N)→ Ω(M):

F ∗ω(u1, · · · , up) := ω (TF (u1), · · · , TF (up)) ,

where (F ∗ω)m = (TmF )
∗ωF (m) and u1, · · · , up ∈ TmM .
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Remark 6.3. (TmF )
∗ is a pull-back between two tangent spaces. The ∗ is different from

the ∗ on F ∗.

Proposition 6.6.
(i) d(dα) = 0,
(ii) F ∗(α ∧ β) = F ∗α ∧ F ∗β,
(iii) d(F ∗α) = F ∗dα,
(iv) d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ.

Proof. We prove (iii). Note that this formula is linear in α, it is enough to prove it for
α = f1df2 ∧ · · · ∧ dfk, where f1, · · · , fk are functions on N . Indeed, locally every α is a
linear combination of forms of this type.

For f a function,

(F ∗(df))m (u) = dfF (m) (TmF (u)) =
(
dF (m)f ◦ TmF

)
(u) = (d(f ◦ F ))m (u),

which indicates F ∗df = d(F ∗f).
Generally, for α = f1df2 ∧ · · · ∧ dfk,

F ∗α = F ∗ (f1df2 ∧ · · · ∧ dfk)

= (F ∗f1)(F
∗df2) ∧ · · · ∧ (F ∗dfk).

The second equality is induced from (ii). Hence

dF ∗α = d(F ∗f1) ∧ (F ∗df2) ∧ · · · ∧ (F ∗dfk) = F ∗(dα).

Now let us prove (iv). Again by linearity it is enough to prove it for α = f1df2∧· · ·∧dfk,
β = g1dg2 ∧ · · · ∧ dgm.

α ∧ β = f1g1df2 ∧ · · · ∧ fk ∧ dg2 ∧ · · · ∧ dgm.

d(α ∧ β) = d(f1g1)df2 ∧ · · · ∧ dgm

= (g1df1 + f1dg1) df2 ∧ · · · ∧ dgm

= g1df1 ∧ · · · ∧ dfk ∧ dg2 ∧ · · · ∧ dgm + f1dg1 ∧ df2 ∧ · · · ∧ dfk ∧ dg2 ∧ · · · ∧ dgm

= g1(df1 ∧ · · · ∧ dfk) ∧ dg2 ∧ · · · ∧ dgm + (−1)k−1f1df2 ∧ · · · ∧ dfk ∧ (dg1 ∧ dg2 ∧ · · · ∧ dgm)

= dα ∧ β + (−1)degαα ∧ dβ.
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7 De Rham Cohomology

Given M a manifold, TM =
⊔
m
TmM .

7.1 Poincaré lemma

A smooth vector filed is, locally in a chart, ξ =
N∑
i=1

ξi
∂
∂xi

, where { ∂
∂xi
} is the dual of {dxi}.

We denote by χ∞(M) the smooth vector fields on M .
An interior product or a vector field with a form

χ∞(M)× Ωk(M)→ Ωk−1(M)

(ξ, ω) 7→ iξω,

where (iξω)m := iξmωm.

Example 7.1. Let N =M × R. On M × R there is a natural vector ∂t,

∂t(m, s) =
d

dt

∣∣∣
t=s
c(t),

where c(t) = (m, t).
What is the i∂tα? α is a form on N , locally we can find a chart (U,X) on M , and

hence (U × R, (X, t)) on N , where t : (m, s) 7→ s. In U × R,

α =
∑
I

fIdxI + dt ∧

(∑
J

gJdxJ

)
.

In general we can write α = α0 + dt ∧ α1. We will prove i∂tα0 = 0 and i∂tα = α1.

dt(∂t) =
d

dt

∣∣∣
t=s
t(m, s) =

d

dt

∣∣∣
t=s
s = 1.

dxi(∂t) =
d

dt

∣∣∣
t=s
xi(m, s) =

d

dt

∣∣∣
t=s
xi(m) = 0.

i∂tα(u2, · · · , uk) = α(∂t, u2, · · · , uk)

= α0(∂t, u2, · · · , uk) + (dt ∧ α1)(∂t, u2, · · · , uk)

= 0 + i∂t(dt ∧ α1)

= (i∂tdt) ∧ α1(u2, · · · , uk) + (−1)dt ∧ i∂tα1(u2, · · · , uk)

= α1(u2, · · · , uk).

Remark 7.1. (ei1 ∧ · · · ∧ eip)(ej1 , · · · , ejp) = det{eisejt}s,t.
Hence if I and J are of increasing order, it is 1 only if I = J , otherwise it is 0.

Definition 7.1. We say α is closed if dα = 0 and α is exact if there exists β such that
α = dβ.

We say α and β are cohomologuous if α− β is exact, for α and β closed.
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Definition 7.2. Let F0 : M → N and F1 : M → N be two smooth maps. We say
F0 is homotopic to F1 if there exists F : M × [0, 1] → N such that F is smooth,
F (m, 0) = F0(m) and F (m, 1) = F1(m).

Remark 7.2. Working definition G : M × [0, 1] → N is smooth if there exists a smooth
map G0 :M × R→ N such that G0|M×[0,1] = G.

Definition 7.3. We say a manifold M is contractible, if the identity M →M is homo-
topic to a constant map Kmo :M → {m0} ⊂M .

Example 7.2. An open ball B in Rn, F (x, t) = tx for x ∈ B, t ∈ [0, 1].

Proposition 7.1. Every compact manifold is not contractible.

Proof. We will prove it later, or not.
My thought: For orientable compact manifold, the top Betti number is 1. For non-

orientable case, we can choose the orientable double cover.

Theorem 7.1 (Poincaré Lemma). If M is contractible, then every closed form is exact.

Theorem 7.2 (Homotopy Lemma). If α ∈ Ωk(N) is closed on N . If F0 and F1 are
homotopic maps M → N , then F ∗

0α and F ∗
1α are cohomologuous.

Proof. We use the Homotopy Lemma to prove the Poincaré Lemma.
Set F0 = id and F1 is a constant map. Since M is contractible, F0 is homotopic to F1.
F ∗
0α = α and F ∗

1α = 0. Hence α is cohomologuous to 0, which means α is exact.
Now we prove the Homotopy Lemma. On M × [0, 1], if α is a k-form, α = α0+dt∧α1,

where α1 = i∂tα and α0 = α− dt ∧ i∂tα.
Js :M →M × [0, 1] such that Js(m) = (m, s). Hence ∂t(m, s) = d

du

∣∣∣
u=s

Ju(m).

Lemma 7.1 (Special case of Lie-Cartan formula).

d

du

∣∣∣
u=s

(J∗
uα) = J∗

s (i∂tdα) + J∗
s d(i∂tα),

where α ∈ Ωk(M × [0, 1]) and

J∗α(m) : u ∈ [0, 1] 7→ (J∗
uα)m ∈

k∧
(TmM).(

d

du

∣∣∣
u=s

J∗
Uα

)
x

:=
d

du

∣∣∣
u=s

[(J∗
uα)x].

Proof of Lemma. a) This is a local formula, hence we can prove it on U × [0, 1] where U
is the domain of a chart.

b) This is a linear formula.
Then it is enough to prove for

α0 = f(x, t)dt ∧ dx1 ∧ · · · ∧ dxq−1,
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α1 = f(x, t)dx1 ∧ · · · ∧ dxq,

where (x1, · · · , xn) are the coordinates in U .
First we consider α1. i∂tα1 = 0 and

dα =
∂f

∂t
dt ∧ dx1 ∧ · · · ∧ dxq +

n∑
i=1

∂f

∂xi
dxi ∧ dx1 ∧ · · · ∧ dxq.

Thus, i∂tdα = ∂f
∂t dx1 ∧ · · · ∧ dxn. J∗

s (i∂tdα) =
∂f
∂t (m, s)dx1 ∧ · · · ∧ dxq.

J∗
uα1 = f(m,u)J∗

udx1 ∧ · · · ∧ J∗
udxq = f(m,u)dx1 ∧ · · · ∧ dxq.

Then d
du

∣∣
u=s

J∗
uα1 =

∂f
∂t (m, s)dx1 ∧ · · · ∧ dxq. Now the formula is proved for α = α1.

For α = α0, i∂tα0 = fdx1 ∧ · · · ∧ dxq−1, then

d(i∂tα0) =
∂f

∂t
dt ∧ dx1 ∧ · · · ∧ dxq−1 +

n∑
i=1

∂f

∂xi
dxi ∧ dx1 ∧ · · · ∧ dxq−1.

i∂tdα0 = i∂t

(
∂f

∂t
dt ∧ dt ∧ dx1 ∧ · · · ∧ dxq−1 +

n∑
i=1

∂f

∂xi
dxi ∧ dt ∧ dx1 ∧ · · · ∧ dxq−1

)

= i∂t

(
n∑
i=1

∂f

∂xi
dxi ∧ dt ∧ dx1 ∧ · · · ∧ dxq−1

)

= −
n∑
i=1

∂f

∂xi
dxi ∧ dx1 ∧ · · · ∧ dxq−1

Then
d(i∂tα0) + i∂tdα0 =

∂f

∂t
dt ∧ dx1 ∧ · · · ∧ dxq−1.

J∗
s (d(i∂tα0) + i∂tdα0) =

∂f

∂t
(m, s)dx1 ∧ · · · ∧ dxq−1=0,

since J∗
udt = d(t ◦ Ju) = 0.

J∗
uα0 = 0. Thus the formula is also prove for the case α = α1.

Set β a closed form on N and F :M × [0, 1]→ N is the homotopy map of F0 and F1.
Set α = F ∗β.

J∗
1α = J∗

1F
∗β = (F ◦ J1)∗β = F ∗

1 β.

J∗
0α = J∗

0F
∗β = (F ◦ J0)∗β = F ∗

0 β.

Then it suffices to show J∗
1α− J∗

0α is exact.
Note that dα = dF ∗β = F ∗dβ = 0, and

J∗
1α− J∗

0α =

∫ 1

0

(
d

du

∣∣∣
u=s

J∗
sα

)
ds

=

∫ 1

0
(J∗
s (i∂tdα) + J∗

s d(i∂tα)) ds

=

∫ 1

0
(J∗
s d(i∂tα)) ds

= d

∫ 1

0
(J∗
s (i∂tα)) ds
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is exact.

Remark 7.3. From d(α+ β) = dα+ dβ, we have d
∫
=
∫
d.

Remark 7.4. Lie-Cartan formula.

Lξ = d ◦ iξ + iξ ◦ d.

7.2 Cohomology group

A family of vector spaces associated to manifold

Definition 7.4. Given k ∈ N > 0, we define the kth de Rham cohomology space

Hk(M) := {ω ∈ Ωk(M) : dω = 0}/{ω : ∃α s.t. dα = ω}.

We denote
Ωkc (M) = {closed forms of degree k},

Ωke(M) = {exact forms of degree k}.

Then Ωke(M) ⊂ Ωkc (M) and Hk(M) = Ωc(M)/Ωe(M).

Theorem 7.3 (De Rham). If M is compact, then dim(Hk(M)) <∞.

Remark 7.5. By M-V argument, we can prove the finiteness for a manifold with finite
good cover, see the book by Bott and Tu.

Definition 7.5. The kth Betti number of M is

bk(M) := dim(Hk(M)).

Goal of this section is to show that bi(Sn) =

1, if i = n, 0

0, otherwise
.

Note that bk(M) = 0 is equivalent to every closed k-form is exact.
For ω ∈ Ωk(M), if ω is closed, then it is in Ωkc , and we use [ω] to denote the cohomology

class in Hk(M) respect to ω.

Proposition 7.2. Show that if smooth F :M → N and [α] = [β] for α, β ∈ Ωk(N), then
[F ∗α] = [F ∗β].

Proof. By definition, there is ω ∈ Ωk−1(N) such that α = β + dω, then

F ∗α = F ∗(β + dω)

= F ∗β + F ∗dω

= F ∗β + dF ∗ω,

hence [F ∗α] = [F ∗β].
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Proposition 7.3. If F : M → N and G : M → N are homotopic. For any closed form
α ∈ Ωkc (N), we have [F ∗α] = [G∗α].

Proof. This is just the Homotopy Lemma 7.2.

Definition 7.6. If F :M → N , we define

F ∗ : Hk(N)→ Hk(M),

ω 7→ F ∗ω = [F ∗α], if [α] = ω.

It is well-defined due to Proposition 7.2.

Theorem 7.4 (Homotopy Lemma). If F and G are homotopic M → N , then F ∗ = G∗ :

Hk(N)→ Hk(M).

Definition 7.7. We say F :M → N is a homotopy equivalence, if there is G : N →M

such that F ◦G ∼ idN and G ◦ F ∼ idM .

Proposition 7.4. If F is a homotopy equivalence between M and N , then bk(M) = bk(N).

Proof. If F ◦G ∼ id, by homotopy lemma id = (id)∗ = (F ◦G)∗ = G∗ ◦ F ∗. Similarly, we
have F ∗ ◦G∗ = id. Hence F ∗ is a bijection between Hk(N) and Hk(M), with the inverse
G∗, which indicates

bk(M) = bk(N).

Proposition 7.5. Show that M × R is homotopy equivalent to M .

Proof. We will construct F :M × R→M which is a homotopy equivalence. Define

F :M × R→M,

(m, t) 7→ m.

G :M →M × R,

m 7→ (m, 0).

Then
F ◦G = id, and G ◦ F : (m, t) 7→ (m, 0).

We can have

H :M × R× [0, 1]→M × R,(
(m, t), s

)
7→ (m, st).

Note that H is smooth, H
(
(m, t), 0

)
= (m, 0) = G ◦ F (m, t) and H

(
(m, t), 1

)
= (m, t) =

idM×R. Hence G ◦ F ∼ idM×R.

Corollary 7.1. bk(M × R) = bk(M).

Corollary 7.2. bk(R2\{0}) = bk(S1).
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7.3 Cohomology of Spheres

Remark 7.6. Set M is a manifold with dimM = m. Then Ωk+1(M) = 0 and hence
Hk+1(M) = 0 for k ≥ m.

H0(M) = {ω ∈ Ω0
c(M)}/{exact forms} = {f : df = 0}/{0}, i.e., H0(M) is the set

of locally constant functions, hence b0(M) is the number of connected components of M .
Thus b0(M) = 1 if M is connected.

Exercise 7.1 (Mayer Vietoris). u = (1, 0, · · · , 0) ∈ Sn and v = (−1, 0, · · · , 0) ∈ Sn.
Define two open sets U = Sn\{u} and V = Sn\{v}. Show that

(i) U and V are contractible.
(ii) U ∩ V is homotopic equivalent to Sn−1

Proof.
(i) Define Kv : U → {v} by Kv(x) = v. We define

H : U × [0, 1]→ Sn,

(x, t) 7→ (1− t)v + tx

‖(1− t)v + tx‖
.

In fact, H(x, 1) = x = id(x) and H(x, 0) = v = Kv(x). Obvious H is smooth, we only
have to verify that H is well-defined, that is, ‖(1− t)v + tx‖ 6= 0.

For x 6= v, since x 6= u = −v, x and v are independent, if (1 − t)v + tx = 0, we have
(1− t) = t = 0, which is impossible. For x = v, ‖(1− t)v + tx‖ = ‖v‖ = 1.

(ii) We treat Sn−1 as a submanifold of Sn and the inclusion map is

i : Sn−1 → Sn, i(x1, · · · , xn) = (0, x1, · · · , xn).

Now we define
r : Sn → Sn−1, r(x0, x1, · · · , xn) =

(x1, · · · , xn)
x21 + · · ·+ x2n

.

Then
i ◦ r(x0, · · · , xn) =

(
0,

x1
x21 + · · ·+ x2n

, · · · , xn
x21 + · · ·+ x2n

)
r ◦ i(x1, · · · , xn) = (x1, · · · , xn) = idSn−1(x1, · · · , xn).

Thus we only need to show that i ◦ r ∼ idSn .
H : U ∩ V → Sn by H

(
(x0, x1, · · · , xn), t

)
= (tx0,x1,··· ,xn)

∥(tx0,x1,··· ,xn)∥ . Then

H
(
(x0, x1, · · · , xn), 0

)
=

(0, x1, · · · , xn)
‖(0, x1, · · · , xn)‖

=

(
0,

x1
x21 + · · ·+ x2n

, · · · , xn
x21 + · · ·+ x2n

)
= i◦r(x0, · · · , xn).

H
(
(x0, x1, · · · , xn), 1

)
= (x0, · · · , xn) = idSn(x0, · · · , xn).
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Lemma 7.2. There is a unique (linear) map

J : Hk(Sn)→ Hk−1(U ∩ V ),

[ω] 7→ [α− β],

where α ∈ Ωk−1(U) with dα = ω|U and β ∈ Ωk−1(V ) with dβ = ω|V ..

Proof. First we explain the existence of α and β. Since ω|U ∈ Ωk(U) and dω|U = (dω)|U =

0, and U is contractible, then we have α ∈ Ωk−1(U) such that dα = ω|U . Ditto for β.
Then we prove that J is well-defined. First we prove it doesn’t depend on the choice

of α and β, then we prove it doesn’t depend on the choice of the representation of [ω].
If α and α′ are in Ωk−1(U) and dα = dα′ = ω|U , then d(α − α′) = 0. Since U is

contractible, there is a form γ ∈ Ωk−2(U) such that α = α′+dγ. Similarly, if β and β′ are
in Ωk−1(V ) and dβ = dβ′ = ω|V , then there is a form η ∈ Ωk−2(V ) such that β = β′ + dη.
Now we have

α− β = α′ − β′ + d(γ − η),

which indicates [α− β] = [α′ − β′] ∈ Hk−1(U ∩ V ).
Second, if [ω] = [ω′] ∈ Hk(Sn), i.e. there is a form θ ∈ Ωk−1(Sn) such that ω = ω′+dθ.

Taking α′ = α− θ|U and β′ = β − θ|V , then we have

dα′ = dα− dθ|U = ω|U − dθ|U = ω′|U ,

dβ′ = dβ − dθ|V = ω|V − dθ|V = ω′|V ,

(α′ − β′)|U∩V = α|U∩V − θ|U∩V − β|U∩V + θ|U∩V = α|U∩V − β|U∩V = (α− β)|U∩V .

Theorem 7.5. J : Hk(Sn) → Hk−1(U ∩ V ) is bijective when k − 1 > 0 and bk(Sn) =

bk−1(U ∩ V ) = bk−1(Sn−1).
For example, b2(S3) = b1(S2).

Idea: we use a function ψ on Sn such thatψ = 1 on a neighborhood of u,

ψ = 0 on a neighborhood of v.

If α is a form defined on U = Sn\{v}, then

ψ · α =

ψ · α on U,

0 on a neighborhood of v.

is a global smooth form on Sn.
Likewise, if β is a form defined on V , then (1− ψ)β is defined on Sn.
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Proof. First we show that J is injective, that is, if J [ω] = 0, then [ω] = 0. Now we have
α ∈ Ωk−1(U), β ∈ Ωk−1(V ), dα = ω|U and dβ = ω|V .

0 = J [ω] = [α− β],

indicates that there is a form γ ∈ Ωk−2(U ∩ V ) such that α = β + dγ. Then we will
construct η ∈ Ωk−1(Sn) such that ω = dη.

Note that γ is defined on U ∩ V , now we will use ψ to construct forms on U and V .
ψγ is well-defined on V (there is a gap in U) and (1− ψ)γ is well-defined on U . Then we
define

α̃ = α− d((1− ψ)γ,

β̃ = β + d(ψγ).

Then on U ∩ V ,

α̃− β̃ = α− β − d((1− ψ)γ + ψγ) = α− β − dγ = 0,

which means α̃ = β̃ on U ∩ V . Now we define

η =

α̃, on U

β̃, on V.

Since α̃ = β̃, η is well-defined on Sn.
Note that on U , we have

ω|U = dα = dα̃ = d(η|U ),

and on V we have
ω|V = dβ = dβ̃ = d(η|V ),

that is ω = dη, i.e. [ω] = 0 ∈ Hk(Sn).
It remains to prove that J is surjective. For any form in Hk−1(U ∩ V ), we choose

γ ∈ Ωk−1
c (U ∩ V ) to represent it. Now we need to find ω ∈ Ωkc (Sn), α ∈ Hk−1(U) and

β ∈ Hk−1(V ) such that

dα = ω|U , dβ = ω|V , [α− β] = [γ].

Since dψ = 0 on V (u) and V (v), dψ ∧ γ is well-defined on U ∪ V = Sn. Let show that
J [−dψ ∧ γ] = [γ]. Define

α := (1− ψ)γ, dα = −dψ ∧ γ, on U.

β := α− γ = −ψγ, dβ = −dψ ∧ γ, on V.
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Proposition 7.6. b1(Sn) =

0, if n > 1,

1, if n = 1.
.

Proof. If α is a closed 1-form on Sn, then there are functions f and g defined on U and V
such that df = α|U and dg = α|V . Then d(f − g) = 0 on U ∩ V .

If n > 1, U ∩ V is connected, hence f − g is a constant on U ∩ V , denoted by λ ∈ R.
Then we define

h :=

f, on U

g + λ, onV.

Then α = dh.
If n = 1, note that U ∩ V = O1 t O2. Then f − g = λ1 on O1 and f − g = λ2 on O2.

Now we define
J : H1(S1)→ H0(S0) = R, [α] 7→ λ1 − λ2

is a bijection. (This proof is similar to the proof of the last theorem).
First we say that J is well-defined. For [α′] = [α], there is a 0-form l such that

α′ = α+ dl, then we define f ′ = f + l, and g′ = g + l, then

df ′ = df + dl = α|U + dl = α′|U ,

dg′ = dg + dl = α|V + dl = α′|V .

And f ′ − g′ = f − g. So λ1 and λ2 keep invariant and hence so does λ1 − λ2.
It’s not difficult to show that J is injective. If λ1−λ2 = 0, then similar to the case for

n > 1, we can construct a global function h such that α = dh.
Now we will prove that J is surjective. For any c ∈ R, we construct a function g such

that g is 0 around u− and g is c around u+.
We assume O1 contains a neighborhood of u− and O2 contains a neighborhood of u+.

Now we define

f :=

g + c, on O1,

g, on O2.

Then we have f − g = c on O1 and f − g = 0 on O2, that is, γ1 = c and γ2 = 0. We need
to verify f is well-defined, that is, f is smooth at point u. Since f = g + c = c around
u− and f = g = c round u+, we say f is continuous at point u. Moreover, g is constant
around u− or u+, then f is smooth at point u.

Remark 7.7. For calculating H1(S1), we can also define∫
: H1(S1)→ R, ω 7→

∫
S1
ω.

We will show that
∫

is a bijection.
If
∫
S1 ω = 0, then ∫ u+

u−
ω =

∫
S1\{u}

ω = 0.
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Since on S1\{u}, there is a function f such that ω = df , then

0 =

∫ u+

u−
df = f(u+)− f(u−).

Now we define f(u) = f(u+) = f(u−). then we have a global function on S1. But we
need to show f is smooth. However, the smoothness is due to df = ω on S1\{u} and the
smoothness of ω.

It suffices to prove
∫

is surjective. For any c ∈ R, ω = c
2πdθ is just what we need.

Corollary 7.3. bi(Sn) =

1, if i = n, 0

0, otherwise
.
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8 Orientation and Manifold with boundary

8.1 Orientation

Definition 8.1. On a manifold of dimension n, a volume form is a form ω of degree
n, such that ωx 6= 0 for every x in M .

Remark 8.1. Recall
∧n(E∗) = 1, where dimE = n a vector space. Then a basis of∧n(E∗) is given by e1 ∧ · · · ∧ en where (e1, · · · , en) is a basis of E with dim(

∧
(E∗)) = 1.

Example 8.1. ω = dx1 ∧ · · · ∧ dxn is a volume form on Rn.
ϕ : Rn → Rn a smooth map, then

ϕ∗(ω) = Jac(ϕ)ω,

where Jac(ϕ) is the function defined on Rn by

Jac(ϕ)(x) = det(Dxϕ) = det

(
∂ϕi
∂xj

)
.

ϕ∗(ω)x(u1, · · · , un) = ωφ(x)(Dxϕ(u1), · · · , Dxϕ(un)) = det(Dxϕ)ωx(u1, · · · , un).

Definition 8.2. A manifold M is orientable if there exists a volume form on M .

Exercise 8.1. We will prove Sn/{− id} = RPn is orientable iff n is odd (“impair”).

Remark 8.2. Assume now that M is connected, then if we choose a volume form ω0 on
M , then every form of degree n = dimM , then every ω in Ωn(M) is of the form ω = fω0,
where f ∈ C∞(M).

In particular, if ω is a volume form, f never vanishes (nowhere 0). Thus if M is
connected, either f > 0, nor f < 0.

Definition 8.3. We have the following equivalence relation, two volume form ω1 and ω2

on M , defines the same orientation if and only if

ω1 = fω2,

with f > 0.

Exercise 8.2. Show that this indeed is an equivalence relation.

Definition 8.4. An orientation on M is the choice of a class in the above equivalence
relation, that is a choice of a volume form, up to multiplication by a positive function.

If M is connected and orientable, M has two orientation, one given by ω0 and another
by −ω0.

M is oriented if it is orientable and an orientation has been chosen.

Definition 8.5. ϕ : M → N is a diffeomorphism, M is oriented by ω1, N is oriented by
ω1. We say ϕ preserves the orientation if ϕ∗ω1 defines the same orientation as ω0.

Example: M,N = Rn, ϕ preserves the orientation, iff Jac(ϕ) > 0.

35



Remark 8.3. If ϕ does not preserves the orientation for M,N connected, then ϕ reverses
the orientation, ϕ∗ω1 ∼ ϕ0.

Theorem 8.1. M is orientable, iff there exists an atlas (Vi, ϕi) on M that that det
(
Jac(ϕi◦

ϕ−1
j )
)
> 0 on Ui ∩ Uj.

Proof. We can always assume for simplicity that M is connected.
Assume M is oriented by ω0. Let (Ui, ϕ̃i) be an atlas on M , where Ui is connected.
If ϕ̃i : Ui ⊂M → Oi ⊂ Rn preserves the orientation. Then we take ϕi = ϕ̃i.
If ϕ̃i : Ui ⊂ M → Oi ⊂ Rn reverses the orientation. Then we take ϕi = A ◦ ϕ̃i, where

A is a linear map with detA = −1.
Then ϕi preserves the orientation,

(ϕi ◦ ϕ−1
j )∗ω = (ϕ−1

j )∗(ϕ∗
iω)

= (ϕ−1
j )∗(fiω0)

= (fi ◦ ϕ−1
j )((ϕ−1

j )∗ω0)

= (fi ◦ ϕ−1
j )gjω,

where f and g are positive function and ω is the volume form dx1∧· · ·∧dxn in Rn. Hence
det
(
Jac(ϕi ◦ ϕ−1

j )
)
> 0.

Assume that det
(
Jac(ϕi ◦ ϕ−1

j )
)
> 0. Let ωi on Ui with ωi = ϕ∗

iω.
On Ui ∩ Uj , ωi = gijωj , where gij is a function on Ui ∩ Uj . The hypothesis gives that

gij > 0, indeed,

ω = (ϕ01
i )∗

(
gijϕ

∗
j (ω)

)
= (gij ◦ ϕ−1

i )
(
(ϕj ◦ ϕ−1

i )∗ω
)

= (gij ◦ ϕ−1
i ) det

(
Jac(ϕj ◦ ϕ−1

i )
)
ω.

Let ψi be a partition of unity associated to Ui (we also assume {Ui} is locally finite).
Then Supp(ψi) ⊂ Ui,

∑
ψi = 1 and ψi ≥ 0. We take ω0 =

∑
i
ψiωi. Let us finally prove

(ω0)x 6= 0 for any x ∈M .
Let i0 such that ψi0(x) > 0. ω0(x) =

∑
i:x∈Ui

ψi(x)ωi(x), where the summation is finite.

ω0(x) = ψi0(x)ωi0(x) +
∑

i ̸=i0:x∈Ui

ψi(x)gii0(x)ω0(x)

=
(
ψi0(x) +

∑
i ̸=i0:x∈Ui

ψi(x)gii0(x)
)
ωi0(x),

where ψi(x)gii0(x) ≥ 0 and ψi0(x) > 0.

Given an oriented manifold M< we can define
∫
M ω, where ω ∈ Ωn(M), n = dimM .
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8.2 Manifold with boundary

Model:
(i) Half space Hn = {(x1, · · · , xn) : x1 ≤ 0}.
(ii)Boundary ∂Hn = {(x1, · · · , xn) : x1 = 0}.

Remark 8.4. The boundary of U in topology language is U \ U .

(iii)For U an open set in Hn, the boundary of U is ∂U = U ∩ ∂Hn.
(iv) A function (or mapping) continuous f : U → R or Rn is smooth if there exists a

smooth g defined on O ⊃ U open set of Rn such that g|U = f .
(v) f : U ⊂ Hn → V ⊂ Hn is a diffeomorphism, if F is smooth, bijective and the

inverse f−1 is smooth.

Proposition 8.1. If f is a diffeomorphism from U ⊂ Hn to V ⊂ Hn, then f(∂U) = ∂V .

Manifold with boundary. M a nice topological space.
Define chart (U,X) where X bijection from U to an open set in Hn. (U,X) and (V, Y )

are C∞ compatible if X ◦ Y −1 and Y ◦X−1 are smooth.
Alas on M gives the definition of manifold with boundary. x ∈ M belongs to the

boundary of M , if there exists a chart (U,ϕ), x ∈ U , ϕ(x) ∈ ∂(ϕ(U)). (The definition is
not depend on the choice of the chart, due to the last proposition.)

Proposition 8.2. If ϕ is a diffeomorphism from M to N , then ϕ(∂M) = ∂N .
∂M is a submanifold of M , dim ∂M = dimM − 1.

Exercise 8.3. M \ ∂M is a usual manifold.

The question is how to define the vector space of a boundary point m ∈ ∂M .
T ∗
mHn = {functions on Hn}/{dmf = 0} = {functions on Rn}/{dmf = 0} = T ∗

mRn.

Definition 8.6. Let v ∈ TmM , m ∈ ∂M . We say v is tangent to the boundary if
v ∈ Tm∂M . We say v is outward normal if v is not tangent to the boundary and there
exists c : [0, 1]→M such that ċ = v.

Proposition 8.3. Assume v, w are outward normal at m, then v = λw + u, where λ > 0

and u ∈ Tm∂M .

Proof. It is enough to prove it in a chart that is for M = Hn.

Proposition 8.4. Given M there exists a vector field ξ along ∂M , such that for any
x ∈ ∂M , ξ(x) is outward normal.

Proof. It is true on Hn, ξ = ∂
∂x1

.
Take an atlas (Ui, ϕi) on M , locally finite. On Ui ∩ ∂M , define ξi = (ϕ−1

i )x(
∂
∂x1

).
Take ψi a partition of unity, then we define ξ =

∑
ψi · ξi.
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Definition 8.7. Assume M is oriented, then the canonical orientation of ∂M is given
by the form ω1 = iξω, where ξ is an outward normal.

The orientation on ∂Hn is given by dx2 ∧ · · · ∧ dxn.

Remark 8.5. U open set in Rn, then U is a manifold with boundary and ∂U = Fr(U) :=

U \ U .

8.3 More on differential forms

Exercise 8.4. For X =
∑
fi

∂
∂xi

and ω = dx1 ∧ · · · ∧ dxn, what is diXω?

Proof.
iXω =

∑
(−1)i−1fidx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn.

diXω =
∑ ∂fi

∂xi
ω.

Exercise 8.5. Find a volume form of Sn to make it orientable.

Proof. Set ω = dx0∧· · ·∧dxn. For any point x = (x0, · · · , xn) ∈ Sn and then X =
∑
xi

∂
∂xi

is the normal vector at x, hence we take

iXω =

n∑
i=0

(−1)ixidx0 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn.

Exercise 8.6. ψ : Sn → Sn takes u to −u, prove that ψ preserves the orientation if n is
odd, and reverses the orientation if n is even.

Proof. Just prove that ψ∗(iXω) = (−1)n+1iXω.

Exercise 8.7. Sn p−→ RPn ≈ Sn/{± id}. So p ◦ ψ = p.
Show that if n is even, then RPn is not oriented.
Show that if n is odd, then RPn is oriented.

Proof. Argue by contradiction for n even. Suppose RPn is orientable, then there is a vol-
ume form ω0 on RPn. Hence p∗ω0 is a volume form on Sn since p is a local diffeomorphism.

Note that p ◦ ψ = p indicates p∗ = ψ∗p∗, hence p∗ω0 = ψ∗(p∗ω0), which shows that ψ
preserves the orientation. That’s a contradiction due to the last exercise.

For n odd. By local diffeomorphism of p, we can push forward the volume form on Sn.
Notice that we should prove that the definition of volume form on RPn does not depend
on the choice of quotient map p or p ◦ ψ.
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9 Integration of Differential Forms on Oriented Manifold

Goal: ω ∈ Ωn(M) with compact support and M has dimension n with M is oriented. We
want to define

∫
M ω.

Remark 9.1. Some people says
∫
M ω = 0 if ω is not of degree equals to the dimension of

M .

9.1 On Rn

Now ω = fdx1 ∧ · · · ∧ dxn. We define∫
Rn

ω :=

∫
Rn

fdx1 · · · dxn,

here dx1 · · · dxn is the Lebesgue measure on Rn.
Change of variable formula, set ϕ a diffeomorphism from Rn to Rn, then∫

U
(f ◦ ϕ)|det J(ϕ)|dx1 · · · dxn =

∫
φ(U)

fdx1 · · · dxn.

Assume ω is supported in an open set U ⊂ Rn, assume that ϕ preserves the orientation,
ϕ a diffeomorphism from U to ϕ(U),∫

φ(U)
ω =

∫
U
ϕ∗ω.

9.2 On Manifold

Suppose ω has compact support in a domain U of a chart U ⊂ M and the coordinates
map is ϕ.

Proposition 9.1. If ω has compact support in (U,ϕ) and (V, ψ) where ϕ and ψ preserve
the orientation, then ∫

φ(U)
(ϕ−1)∗ω =

∫
ψ(U)

(ψ−1)∗ω.

Definition 9.1. Let (Ui, ϕi) be an atlas of M , where ϕi preserves the orientation. Let ψi
be a partition of unity subordinated to Ui.∫ (Ui,φi,ψi)

M
ω =

∑
i∈I

∫
φi(Ui)

[(ϕ−1
i )∗(ψiω)].

Proposition 9.2.
∫ (Ui,φi,ψi)
M ω does not depend on the choice of (Ui, ϕi, ψi) and then we

define ∫
M
ϕ :=

∫ (Ui,φi,ψi)

M
ω.
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Proof. ∫ (Uj ,φj ,ψj)

M
ω =

∑
j

∫
φj(Uj)

(
ϕ−1
j

)∗
(ψjω)

=
∑
i,j

∫
φj(Uj)

(
ϕ−1
j

)∗
(ψjψiω)

=
∑
i,j

∫
φj(Uj∩Ui)

(
ϕ−1
j

)∗
(ψjψiω)

=
∑
i,j

∫
φi(Uj∩Ui)

(
ϕ−1
i

)∗
(ψjψiω)

=
∑
i

∫
φi(Uj∩Ui)

(
ϕ−1
i

)∗
(ψiω)

=

∫ (Ui,φi,ψi)

M
ω.

(Partition twice.)

Proposition 9.3. M is M with the opposite orientation,∫
M
ω = −

∫
M
ω.

Proposition 9.4. If ϕ :M → N is diffeomorphism preserving the orientation, then∫
φ(M)

ω =

∫
M
ϕ∗ω.

9.3 Stokes Formula

Let M be an oriented manifold with boundary ∂M . ∂M is an oriented manifold with
orientation iξω where ξ is an outward vector field and ω defining the orientation on M .

Theorem 9.1. For α ∈ Ωn(M) with compact support and dimM = n,∫
M
dα =

∫
∂M

α.

Exercise 9.1. Show that ∫
[a,b]

df =

∫
b
f +

∫
a
f =

∫
∂[a,b]

f.

Proof. ω = dx1. idx1ω = 1 at b, and i−dx1ω = −1.

Proof. This formula is linear in α, then it is enough to prove it for α with support in a
chart. By Hn we mean {(x1 ≤ 0, x2, · · · , xn)}∫

P
α =

∫
Hn

dα.

α = fdx2 ∧ · · · ∧ dxn + dx1 ∧
n∑
i=2

gidx2 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dxn.
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Since x1 ≡ 0 on P , then all the terms containing dx1 vanishes. Then∫
P
=

∫
Rn−1

f(0, x2, · · · , xn)dx2 ∧ · · · ∧ dxn.

Now dα = ∂f
∂x1

dx1 ∧ · · · ∧ dxn +
n∑
i=2

(−1)i ∂gi∂xi
dx1 ∧ · · · ∧ dxn, then

∫
Rn−1

(∫
x1≤0

(
∂f

∂x1
dx1

))
dx2 · · · dxm =

∫
Rn−1

(f(0, x2, · · · , xn)) dx2 · · · dxm.

∫
Rn−1

(∫
xi∈R

∂gi
∂xi

dxi

)
dx1 · · · ˆdxi · · · dxn = 0.

Here we used the fact ω is compactly supported.

Corollary 9.1. If M has no boundary, then∫
M
dω = 0.

Theorem 9.2 (Brouwer fixed point theorem). Let ϕ : Bn → Bn smooth (continuous),
there is x ∈ B such that ϕ(x) = x.

Definition 9.2. A retraction is a smooth map

F : Bn → Sn−1 = ∂Bn

such that F |Sn−1 = id.

Proposition 9.5. There is no retraction from Bn to Sn−1.

Proof. Let F be a retraction from Bn to Sn−1. Let ω be the volume form on Sn−1, then

0 6=
∫
Sn−1

ω =

∫
Sn−1

F ∗ω =

∫
Bn

dF ∗ω =

∫
Bn

F ∗(dω) = 0.

Proof of Brower fixed point theorem. For x ∈ Bn and ϕ(x) 6= x ∈ Bn, consider the di-
rected line ϕ(x)x intersecting Sn−1 at F (x), hence F is the retraction.

Proposition 9.6. If ω = fω0, where ω0 is the orientation. If f ≥ 0 and there is m ∈M
such that f(m) > 0, then

∫
ω > 0.

We will prove it for M oriented and closed (no boundary and compact), the following
map is an isometry

Hn(M)→ R

ω 7→
∫
M
ω

Exercise 9.2. Let ω be an element of Ωn(Rn) with compact support, and
∫
Rn ω = 0, we’ll

prove that there is α with compact support such that ω = dα.
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1. Prove that

Hn(Sn)→ R

ω 7→
∫
Sn
ω

is a bijection.

Since
∫
Sn volSn 6= 0, we say the map is not 0, hence bijective, then we have the

following statement.

Let ω ∈ Ωn(Sn), assume that
∫
Sn ω = 0 then ω = dβ.

2. Let x0 ∈ Sn, then Sn \ {x0} is diffeomorphism to Rn. Just stereographic ψ.

Let ω ∈ Ωn(Rn) with compact support and
∫
Rn ω = 0.

ψ∗ω is defined on Sn \ {x0} and is 0 on a neighborhood of x0.

Let ω0 = 0 on a neighborhood of x0 and ω0 = ψ∗ω,∫
Sn
ω0 =

∫
Sn\{x0}

ψ∗ω =

∫
Rn

ω = 0.

Then there is an (n− 1)-form β on Sn such that dβ = ω0.

Note that dβ = 0 around x0, then by Poincaré lemma, there is γsuch that β = dγ

around x0. We use a cut-off function to extend γ to a global form γ̃ on Sn. Then
define α0 = β−dγ̃, then α0 is 0 around x0 and dα0 = dβ = ω0. Hence α = (ψ−1)∗α

is the α with dα = ω.

Exercise 9.3. If ω ∈ Ωn(M) with dimM = n ≥ 2. M is connected, oriented and closed.
If
∫
M ω = 0, then ω is exact.

Proof. M =
N⋃
i=1

Ui where Ui are diffeomorphism to balls. Let ψi be a partition of unity

subordinated to Ui,
∑
ψi = 1, ψi ≥ 0 and Suppψi ⊂ Ui.

Let mi ∈ Ui and let Oi open set such that mi ∈ Oi ⊂ Ui. We want to show that ∀Oi,
there is a from ωi ∈ Ωn(M) with Suppωi ⊂ Oi and [ω] = [

∑
ωi].

First we try ω̃i = ψiω, then ω =
∑
ω̃i. But Supp ω̃i is not necessarily contained in Oi.

Hence we want to find αi with Suppαi ⊂ Oi and [αi] = [ω̃i].
There exists βi with Supp(βi) ⊂ Oi and

∫
M βi 6= 0. We define αi =

∫
ω̃i∫
βi
βi. Then∫

αi =
∫
ω̃i on Ui, hence αi − ω̃i = dγi with support in Ui.

Let γ̃i = γi on Ui, 0 outside. ωi = αi on Ui and 0 outside. Then ωi − ω̃i = dγi. Then
[ω] =

∑
[ωi].

Now we want to move these ωi into one chart!
Let U be an open set in M which is diffeomorphisms to Rn. Let q1, · · · , qp in U distinct

points. Then by the Theorem 13.3, there exists a diffeomorphism F such that F (qi) = mi.
Choose Oi such that F−1(Oi) ⊂ U . Then we have

[F ∗ω] =
∑

[F ∗ωi],
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by our construction Supp(
∑
F ∗ωi) ⊂ U .

Let β =
∑
F ∗ωi then Supp(β) ⊂ U , then∫

M
β =

∑
M

∫
F ∗ωi =

∑
M

∫
ωi = 0.

Thus β = dα with Supp(α) ⊂ U hence β is closed.

Now we conclude what we’ve proved: if M is a closed, oriented and connected, then∫
M ω = 0 ⇐⇒ ω = dα, which indicates bn(M) = 1.

We will see that if M is closed but not oriented, then Hn(M) = 0.
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10 Vector Fields and Flows

10.1 Differential equations

Definition 10.1. A vector field on Rn, defined on O ⊂ Rn is X : O → Rn.
The associated differential equation is

dxi
dt

= Xi(x1, · · · , xn).

An orbit of the differential equation is a solution c(t) = (x1(t), · · · , xn(t)) of the last
equation, i.e. dc

dt (t) = X(c(t)).

Definition 10.2. A smooth vector filed ξ is a map M ξ−→ TM =
⊔
x
TxM such that

(i) ξ(m) ∈ TmM ;
(ii) for every m, there exists a chart ϕ = (x1, · · · , xn) locally ξ =

m∑
i=1

ξi
∂
∂xi

, where ξi
are smooth function.

Definition 10.3. An orbit of ξ is a curve c :]a, b[→M , such that ċ(t) = ξ(c(t)).

Definition 10.4. A flow of a vector field ξ on M is a map φ : O → M , where O is an
open subset in M ×R containing M ×{0}. We use Im to denote O ∩ {m}×R, φ satisfies

(i) φ(m, 0) = m.
(ii) the map φ|Im : (m, t) 7→ φt(m) := φ(m, t) is an orbit of the vector field ξ, i.e.

d

dt

∣∣∣
t=s
φt(m) = ξ(φs(m)).

Definition 10.5. We say φ is maximal, if for any flow (φ′,O ′) then O ′ ⊂ O and φ|O′ =

φ′.

Theorem 10.1. Let ξ be a smooth vector field on M , then ξ admits a unique maximal
flow φ.

Remark 10.1. In Rn: existence and uniqueness of solution of ODE.

Definition 10.6. A flow is complete if O =M × R.

Theorem 10.2. If ξ has compact support; then its maximal flow is complete.

Definition 10.7. A vector field is complete whenever its maximal flow is complete.

Remark 10.2. Convention. Assume that for simplicity the flow φ, {φt}t∈R is complete.
Then

φt ◦ φs = φt+s: φt(φs(x)) = φt+s(x).(
d

dt
φt

) ∣∣∣
t=u

(φs(x)) = ξ(φu(φs(x))).

d

dt

∣∣∣
t=u

(φt+s(x)) =
d

dw

∣∣∣
w=u+s

φw(x) = ξ(φs+u(x)).
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Let c1 : t 7→ φt(φs(x)) thus it is a solution ofċ1(t) = ξ(c1(t)),

c1(0) = φs(x).

Let c2 : t 7→ φt+s(x) and it also a solution of the last equations. By the uniqueness,
c1(t) = c2(t) for any t ∈ R.

Definition 10.8. A vector field depending on time is a family of vector field {ξt}t∈R
such that (locally) ξt =

n∑
i=1

fi(t, x1, · · · , xn) ∂
∂xi

, where the fi are smooth.

The integral curve of ξt is a differentiable curve γ : J0 →M , where J0 is an interval
contained in the domain of t, such that

γ′(t) = ξt(γ(t)).

The flow of a vector field depending on time is φ : O →M , where O is an (good)
open subset in M × R× R containing M × {(s, s) ∈ R2}, denoting φus (x) = φ(x, s, u), we
ask φ

s
s(x) = x,

∂
∂sφ

u
s (x)

∣∣∣
s=t

= ξt(φ
u
t (x)).

In other words, c : t 7→ φut (x),
(i) is a solution of

ċ(t) = ξt(ct(x)),

(ii) c(u) = x.
Especially we have ∂

∂sφ
u
s (x)

∣∣
s=u

= ξu(φ
u
u(x)) = ξu(x).

Exercise 10.1. φuv ◦ φsu = φsv. (Similar to prove φt ◦ φs = φt+s.)

Remark 10.3. A (usual) flow is a flow depending on time ξt = ξ, then φst = φt−s.

We will prove the existence and uniqueness of flows depending on time.
A vector filed depending on time, is a vector field on M × R, ξ(m, t) = ξt(m).

10.2 Lie brackets

Definition 10.9. A derivation at a point m ∈ M is a linear map ∂ : C∞(M) → R
such that

(i) ∂(fg) = f(m)∂(g) + g(m)∂(f),
(ii) ∂f = 0 if f ≡ 0 on V (m).
A derivation on M is a linear map ∂ : C∞(M)→ C∞(M).

(ii) indicates that if f = g on V (m), then ∂f = ∂g.
If a function f is just defined on U ∈ V (m), then we can define uniquely

∂f := ∂(ψf),

where Suppψ ⊂ U and ψ ≡ 1 on V (m). (It does not depend on the choice of ψ.)
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Theorem 10.3. (a) Every vector X in TmM defines a derivation

∂Xf := df(X).

(b) Conversely every derivation is uniquely of this form.

Proof.
(a) Let X be a vector in TmM , there exists a curve c(t) such that c(0) = m and

ċ(0) = X, we have

df(X) =
d

dt

∣∣∣
t=0

(f ◦ c(t)),

then (a) follows from derivation of products.
(b) If f is defined on U ∈ V (m), let X be coordinates on U with X(m) = 0. By

Taylor’s formula,

f = f(m) +

n∑
i=1

aixi +

n∑
i=1

hixi,

where ai are constant and hi are smooth function with hi(m) = 0.
Let ∂ be a derivative, then

∂f(m) = 0,

∂(aixi) = ai∂xi + xi(m)∂ai = ai∂xi,

∂(hixi) = hi(m)∂xi + xi(m)∂hi = 0.

Hence ∂f =
n∑
i=1

ai∂xi, where ai = ∂f
∂xi

(m) and ∂xi are constant. Then we define the vector

field Y =
n∑
i=1

(∂xi)
∂
∂xi

, then

df(Y ) =
n∑
i=1

aidxi(
n∑
j=1

(∂xj)
∂

∂xj
) =

n∑
i=1

ai∂xi = ∂f.

Definition 10.10. A derivation on a manifold is a linear map ∂ : C∞(M)→ C∞(M)

with two properties
(i) If f ≡ 0 on V (m), then ∂f ≡ 0 on V (m).
(ii) ∂(fg) = f∂g + g∂f .

Theorem 10.4. (a) Every vector filed X on M defines a derivative on M by ∂Xf :=

df(X).
(b) Every derivative on M is obtained by a unique vector field.

Proposition 10.1. If ∂1 and ∂2 are two derivations, then

[∂1, ∂2] : f 7→ ∂1(∂2(f))− ∂2(∂1(f))

is also a derivation.
Then we have the Jacobi identity,[

∂1, [∂2, ∂3]
]
+
[
∂2, [∂3, ∂1]

]
+
[
∂3, [∂1, ∂2]

]
= 0.
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Definition 10.11. Given two vectors fields X,Y , the Lie bracket [X,Y ] is the vector field
such that

∂[X,Y ] = [∂X , ∂Y ].

Remark 10.4. The following notations stand for the same thing:

df(X), ∂Xf, LXf, X · f.

For example,
[X,Y ] · f = X · (Y · f)− Y · (X · f),

L[X,Y ]f = LX(LY f)− LY (LXf).

Proposition 10.2.
(i) [X,Y ] = −[Y,X],
(ii)

[
X, [Y, Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0.

(iii) [fX, Y ] = f [X,Y ]− (Y · f)X.

Proof.

[fX, Y ] · g = (fX) · (Y · g)− Y · (fX · g)

= fX · (Y · g)− (Y · f)(X · g)− fY · (X · g)

=
(
f [X,Y ]− (Y · f)X

)
g.

Exercise 10.2. X =
n∑
i=1

fi
∂
∂xi

, and Y =
n∑
i=1

gi
∂
∂xi

, then

[X,Y ] =

n∑
i=1

(
fj
∂gi
∂xj
− gj

∂fi
∂xj

)
∂

∂xi
.

Proof.

[X,Y ] =
∑
i,j

[fi
∂

∂xi
, gj

∂

∂xj
]

=
∑
i,j

fi[
∂

∂xi
, gj

∂

∂xj
]− gj

∂fi
∂xj

∂

∂xi

=
∑
i,j

fi(gj [
∂

∂xi
,
∂

∂xj
] +

∂gj
∂xi

∂

∂xj
)− gj

∂fi
∂xj

∂

∂xi

=
∑
i,j

fi
∂gj
∂xi

∂

∂xj
− gj

∂fi
∂xj

∂

∂xi

=
n∑
i=1

(
fj
∂gi
∂xj
− gj

∂fi
∂xj

)
∂

∂xi

Exercise 10.3. [ ∂∂x ,
∂
∂y + x ∂

∂z ] =
∂
∂z .
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Definition 10.12. We define LXY := [X,Y ].

Then [X, fY ] = (X · f)Y + f [X,Y ] can be written into

LX(fY ) = (LXf)Y + fLXY.

10.3 Linear Differential Fields

Let A ∈Mn(Rn), define XA(x) = A · x, such a vector field is called linear.

Exercise 10.4. [XA, XB] = X−[A,B], where [A,B] = AB −BA.

Proof. Set A = {aji} and B = {bji}. Then XA =
∑
i,j
ajixj

∂
∂xi

, and XB =
∑
i,j
bjixj

∂
∂xi

.

[A,B]ji =
∑
k

aki b
j
k − b

k
i a
j
k. X[A,B] =

∑
i,j,k

(aki b
j
k − b

k
i a
j
k)xj

∂
∂xi

.

[XA, XB] = [
∑
i,j

ajixj
∂

∂xi
,
∑
k,l

blkxl
∂

∂xk
] =

∑
i,j,k,l

ajixjb
l
kδ
i
l

∂

∂xk
−blkxlδkj a

j
i

∂

∂xi
=
∑
i,j,k

(ajkb
k
i−b

j
ka
k
i )xj

∂

∂xi
.

Let XA be a linear vector field associated to A, what is the flow of XA is

φt(x) = etA · x.

Exercise 10.5. Let ψ be a diffeomorphism from M to N . Let X be a vector filed on
M with flow φt. Let φ̃t = ψ ◦ φt ◦ ψ−1. Show that φ̃t is the flow of some vector field
Y (y) = (Tψ−1(y)ψ)X(ψ−1(y)).

Proof. Set φ :M × R→M , then φ̃ : N × RN . For any n ∈ N , set m = ψ−1(n).
(i) φ̃(n, 0) = ψ ◦ φ0 ◦ ψ−1(n) = ψ ◦ φ0(m) = ψ(m) = n.
(ii)

d

dt

∣∣
t=0

φ̃(n, t) =
d

dt

∣∣
t=0

(ψ◦φt◦ψ−1(n)) =
d

dt

∣∣
t=0

(ψ◦φt(m)) = (Tmψ)X(m) = (Tψ−1(y)ψ)X(ψ−1(y)).

Proposition 10.3. Let X,Y be vector field on M , X has flow φt and let Yt = φt,∗(Y ),
then

d

dt

∣∣∣
t=0

Yt = −[X,Y ].

Remark 10.5. Convention: ψ∗ = (ψ−1)∗.
Hence by defining Zt = φ∗t (Y ), we have

d

dt

∣∣∣
t=0

Zt = [X,Y ].

Note that φ−t : φt(U)→ U will push Yϕt(u) into TuM .
Let f :M → R, then

LXf = df(X) =
d

dt
(f ◦ φt) =

d

dt
(φ∗t (f)).
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Labourie’s Proof. Let Z = d
ds

∣∣∣
s=0

(φ∗s(Y )). Let f :M → R.

(LZf)m = (df)m

(
d

ds

∣∣∣
s=0

(φ∗s(Y ))m

)
= (df)m

(
d

ds

∣∣∣
s=0

(Tϕs(m)φ−s)(Yϕs(m))

)
=

d

ds

∣∣∣
s=0

(
(df)m(Tϕs(m)φ−s)(Yϕs(m))

)
=

d

ds

∣∣∣
s=0

(
dϕs(m)(f ◦ φ−s)(Yϕs(m))

)
,

where the third equality holds since (df)m is just a linear transformation on TmM , inde-
pendent of s, and the fourth equality is the derivative of component function.

Let define gs :M → R. gs(m) = [dm(f ◦ φ−s)](Y (m)) = LY (f ◦ φ−s)(m). Then

(LZf)m =
d

du

∣∣∣
u=0

gu ◦ φu(m) =
∂

∂s

∣∣∣
s=0,t=0

(gs ◦ φt)(m) +
∂

∂t

∣∣∣
s=0,t=0

(gs ◦ φt)(m).

Note that

∂

∂t

∣∣∣
t=0,s=0

(gs ◦ φt)(m) = LX(gs(m))
∣∣∣
s=0

= LX(df(Y )) = LXLY f.

∂

∂s

∣∣∣
t=0,s=0

(gs◦φt)(m) =
∂

∂s

∣∣∣
s=0

LY

(
f ◦ φ−s)(m) = LY (

∂

∂s

∣∣∣
s=0

f ◦ φ−s
)
(m) = −LY LXf(m).

My Proof. We prove directly that

d

dt

∣∣∣
t=0

φ−t,∗(Y ) = [X,Y ].

We denote the Jacobi matrix of φt as At, and the Jacobi matrix of φ−t as A−1
t , note that

A−1
t (φt(u))At(u) = At(u)A

−1
t (φt(u)) = id : TuM → TuM . Note that At(u) =

∂ϕit
∂xj

(u).
Derivate A−1

t (φt(u))At(u) = id by t, we have

∂

∂t
A−1
t (φt(u) = −A−1

t (φt(u))

(
d

dt
At(u)

)
A−1
t (φt(u)).

Let X = ai∂i, Y = bi∂i, and we use {ai}, {bi} to denote these volume matrix, which
is a matrix function around u.

φ−t,∗(Y ) = A−1
t (φt(u)){bi(φt(u))}.
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Derivate by t, in matrix form, we have

LXY =
d

dt

∣∣∣
t=0

φ−t,∗(Y ) =

(
d

dt

∣∣∣
t=0

A−1
t (φt(u))

)
{bi(φ0(u))}+A−1

0 (φ0(u))

(
d

dt

∣∣∣
t=0
{bi(φt(u))}

)
= −

(
A−1
t (φt(u))

(
d

dt
At(u)

)
A−1
t (φt(u))

) ∣∣∣
t=0
{bi(u)}+ d

dt

∣∣∣
t=0
{bi(φt(u))}

= −
(
d

dt

∣∣∣
t=0

At(u)

)
{bi(u)}+ d

dt

∣∣∣
t=0
{bi(φt(u))}

= −
(
d

dt

∣∣∣
t=0
{∂φ

i
t

∂xj
(u)}

)
{bi(u)}+ { ∂b

i

∂xj
(u)}{dφ

j
t (u)

dt

∣∣∣
t=0
}

= −

(
∂ d
dt

∣∣
t=0
{φit}

∂xj
(u)}

)
{bi(u)}+ { ∂b

i

∂xj
(u)}{aj(u)}

= −{ ∂a
i

∂xj
(u)}{bi(u)}+ { ∂b

i

∂xj
(u)}{aj(u)}

= − ∂a
i

∂xj
(u)bj(u)∂i +

∂bi

∂xj
(u)aj(u)∂i

= −Y X +XY = [X,Y ].

Proposition 10.4. LX(fY ) = (LXf)Y + fLXY .

Example 10.1. When X = XA and Y = XB,

Yt(u) = φt,∗Y (u) = (Tϕ−t(u)φt)(Y (φ−t(u)) = etABe−tAu.

d

dt

∣∣∣
t=0

Yt(u) = (AB −BA)u = [XA, XB]u = −X[A,B]u.

Example 10.2. Let {φt} be the flow of X, and {ψt} the flow of Y . Assume that φt ◦ψs =
ψs ◦ φt for any s, t, then [X,Y ] = 0.

What is the flow of Ys?
ψ̃t = φs ◦ ψt ◦ φ−s = ψt.

In this case, the flow of Ys is the flow of Y , hence Ys = Y . Then d
dsYs = 0.

Example 10.3. Assume [X,Y ] = 0, then φt ◦ ψs = ψs ◦ φt for any s, t.

0 =
d

ds
[φt,∗(Ys)](y) =

d

ds
(Tϕ−t(y)φt)(Ys(φ−t(y)) =

(
Tϕ−t(y)φt

)( d

ds
Ys(φ−t(y)

)
,

hence d
ds

∣∣
s=t
Ys = 0, hence Ys = Y for any s. Then their flows coincide

φs ◦ ψt ◦ φ−s = ψt,

that is what we need to prove.

Geometric interpretation.
Assume that [X,Y ] = 0, then we have φs ◦ ψt = ψt ◦ φs. Given m0 ∈ M , it allows us

to define F : R2 →M , such that

F (s, t) := (φs ◦ ψt)(m0).

Then we have ∂F
∂s (s0, t0) = X(F (s0, t0)) and ∂F

∂t (s0, t0) = Y (F (s0, t0)).
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Definition 10.13. Let ω be a k-form on M , we define the Lie derivative of forms as

LXω :=
d

ds

∣∣∣
s=0

(φ∗sω).

This is coherent when degω = 0.

Proposition 10.5.
(a). LX : Ωk(M)→ Ωk(M) is linear;
(b). LX(α ∧ β) = LXα ∧ β + α ∧ LXβ;
(c). LX(dω) = d(LXω).
(d). L[X,Y ]ω = LXLY ω − LY LXω;
(e). Lie-Cartan formula

LXω = d(iXω) + iXdω.

Proof. (a) is trivial. (b) is from the fact φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ. (c) is shown in the
following calculation,

LX(dω) =
d

ds

∣∣∣
s=0

(φ∗sdω) =
d

ds

∣∣∣
s=0

(dφ∗sω) = d
d

ds

∣∣∣
s=0

(φ∗sω) = dLXω.

The proof of (d) is by induction on the degree of ω. For degω = 0, it is the definition
of [X,Y ]. Assume that it is true for deg η = p− 1,

L[X,Y ]η = LXLY − LY LXη.

Any form of degree p can be written into the following form

ω =
∑
i∈I

fidαi,

where αi are p− 1 forms. Now

L[X,Y ]ω = L[X,Y ]

(∑
i∈I

fidαi

)
=
∑
i∈I

(L[X,Y ]fi)dαi + fi(L[X,Y ]dαi)

=
∑
i∈I

(L[X,Y ]fi)dαi + fid(L[X,Y ]αi)

=
∑
i∈I

(
(LXLY − LY LX)fi

)
dαi + fid(LXLY − LY LX)αi

=
∑
i∈I

(
(LXLY − LY LX)fi

)
dαi + fi(LXLY − LY LX)dαi

=
∑
i∈I

(LXLY − LY LX)(fidαi)

= (LXLY − LY LX)

(∑
i∈I

fidαi

)
= (LXLY − LY LX)ω.
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Exercise 10.6. Any form of degree p can be written into the following form

ω =
∑
i∈I

fidαi,

where αi are p− 1 forms.

The First Proof of Lie-Cartan formula. For degω = 0, set ω = f , then

iXdf + diXf = iXdf = df(X) = LXf.

Or we can also prove for degω = 1.
Now we assume the formula is true for deg(p− 1).
First case is ω = fdα, where degα = p− 1, then

LXω = LX(fdα)

= (LXf)dα+ fdLXα

= (LXf)dα+ fd(iXdα+ diXα)

= (LXf)dα+ fdiXdα.

iXdω + diXω = iXd(fdα) + diX(fdα)

= iX(df ∧ dα) + iX(fddα) + d(fiXdα)

= (iXdf)dα− df ∧ iX(dα) + df ∧ iX(dα) + fdiXdα

= (LXf)dα+ fdiXdα

Then this formula is true for ω = fdα. We deduce Lie-Cartan is true for all ω of degree
p, using the linearity of LX , d ◦ iX and iX ◦ d.

Now we check the Special case of Lie-Cartan formula 7.1.
Js(m) = (m, s) and φs : (m, t) 7→ (m, t + s) is the flow of ∂t. Js = φs ◦ J0 and

(Js)
∗ = J∗

0φ
∗
s.

d

ds

∣∣∣
s=0

(φ∗sα) = L∂sα = i∂sdα+ di∂sα

We pull them back through J∗
0 , getting

J∗
0

(
d

ds

∣∣∣
s=0

(φ∗sα)

)
=

(
d

ds
(J∗

0 ◦ φ∗)
∣∣∣
s=0

)
(α) =

d

ds

∣∣∣
s=0

(J∗
sα).

10.4 Frobenius Theorem

Definition 10.14. M is a manifold, TM = tx∈MTxM . A sub-distribution (or a
distribution) of rank p, is a family {Px}x∈M such that for any x, Px is a vector subspace
of dimension p pf TxM .

A distribution F of rank p is smooth if for every m, there exists smooth vector fields
X1, · · · , Xp on a neighborhood of x, such that X1(n), · · · , Xp(n) is a basis of Fn.
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For example, (i) a vector field X such that X(m) 6= 0 on M , then Pm = RX(m).
(ii) Let U be an open set in Rn × Rk, P(m,n) = {0} × Rk ⊂ T(m,n)Rn × Rk.
(iii) If U is an open set in M ×N . P(m,n) = TnN × {0} ⊂ T(m,n)M ×N .

Definition 10.15. A distribution is called integrable if for any x ∈M , there is a chart
(U,X) at x such that X∗(F) is of type (ii).

Or equivalently, a distribution is called integrable if for any m ∈ M , there is a
submanifold Nm 3 m, such that ∀x ∈ N , TxNm = Fx.

Exercise 10.7. If we can find X1, · · · , Xp as above that that [Xi, Xj ] = 0, then F is
integrable.

Proposition 10.6 (Pre Frobenius). Assume that on a neighborhood of m (any m ∈M),
there exist k-vector fields defined on U ,

(i) X1(n), · · · , Xk(n) is a basis of Fn, ∀n ∈ U ,
(ii) [Xi, Xj ] = 0 for any i, j.

Then F is integrable.

Proof. Let m ∈M , let φit is the flow of Xi. We know that φit ◦φ
j
s = φjs ◦φit (condition (ii)).

Define

ψ :]− ε, ε[k →M

(t1, · · · , tk) 7→ (φ1t1 ◦ · · · ◦ φ
k
tk
)(m).

Then

T(t1,··· ,tk)ψ

(
∂

∂t1

)
=

∂

∂t1

∣∣∣
s=t1

φ1s ◦ φ2t2 ◦ · · · ◦ φ
k
tk
(m) = X1(φ

1
t1 ◦ · · · ◦ φ

k
tk
(m)).

Similarly, due to φis and φjt commutes, Tψ( ∂
∂tj

) = Xj(φ
1
t1 ◦ · · · ◦ φ

k
tk
(m)). Then

Tψ(T )
(
ψ(]− ε, ε[k)

)
= Im(TTψ) = Span(X1, · · · , Xk) = Fψ(T ),

where T standing for (t1, · · · , tk).

Theorem 10.5 (Frobenius Theorem). F is integrable, if an only if ∀X,Y such that
X(m) ∈ Fm and Y (m) ∈ Fm then [X,Y ](m) ∈ Fm.

Remark 10.6. If X is a vector field, for any m, X(m) 6= 0. Define Lx = RX ⊂ TM ,
then the 1-dimension distribution is integrable (⇐⇒ existence of solution ODE).

Hence every 1-dimension distribution is integrable.
Non-Example. On R3, X = ∂

∂x , Y = ∂
∂y+x

∂
∂z . Then F(x,y,z) = 〈X,Y 〉 is not integrable.

Note that (X,Y, [X,Y ]) is always a basis of R3.

Proof of Frobenius Theorem. ⇒ is note difficult due to the definition of integral.
For ⇐, we will prove that there exists X1, · · · , Xk a basis of F , with [Xi, Xj ] = 0.
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11 Vector Bundle

11.1 Definitions

TM = txTxM , F = txFx, ∧k(T ∗M) = txT ∗
xM denoting family of vector spaces.

Definition 11.1. A vector bundle of rank k is a triple (π, E , X) where E , X are topo-
logical spaces (which are nice: Hausdorff and σ-compact), and π : E → X is continuous.

We call π as projection, E the total space and X is the base space.
(i) The fiber at x, Ex = π−1(x) is a vector space of dimension k.
(ii) Local trivialization property: given x ∈ X, there exists a neighborhood U of x

(trivializing neighborhood), and a continuous map φ (called trivializing),

π−1(U) =: E|U
ϕ−→ E × U,

where E is a vector space, such that
(i) φ(Ex) = E × {x},
(ii) φ|Ex is a linear isomorphism with E × {x}.

Example 11.1. Trivial bundle over X, for E any vector space, E = E×X with π(e, x) =
x.

Example 11.2. Tautological bundle.
Gk(E) = {P vector space in E of dimension k}.

E ×Gk(E) ⊃ τk = {(u, P ) ∈ E ×Gk(E) : u ∈ P}.

π : τk → Gk(E), (u, P ) 7→ P.

The fiber π−1(P ) = {(u, P ) : u ∈ P} ≈ {u ∈ P} a vector space of dimension k.
Let P ∈ Gk(E) and Q a vector space such that P ⊕Q = E. We defined

UP,Q = {P ′ ∈ Gk(E) : P ′ ⊕Q = E}.

For every P ′ ∈ UP,Q, let λP ′ : P ′ → P such that x− λP ′(x) is parallel to Q.

φ : τk|UP,Q
→ P × U

(v, P ′) 7→ (λP ′(v), P ).

Now φ|π−1(P ′) = λP ′ and λP ′ is an isomorphism.
Define φ̂ : E × UP,Q → P × UP,Q, (u, P ′) 7→ (λ(u), P ′), where λ is the projection from

E to P such that E(x)− x parallel to Q. Note that λP ′ = λ|P ′ and φ = φ̂|τk|UP,Q
.

Exercise 11.1. Accept the fact that the total space of the tautological bundle of RP1 is
the Möbius band.
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Definition 11.2. A continuous section of π : E → X is a continuous map σ : X → E
such that σ(x) ∈ Ex.

For example, Zero section σ0 : x→ 0x the zero of Ex.
Space of section is denoted by Γ(E), it forms a vector space.
Morphism is

E F

X

ϕ

with φ(Ex) = Fx and φ|Ex is linear.

Definition 11.3. Let E be a vector bundle, a sub-bundle is a closed subset F ⊂ E. such
that F ∩ Ex is a vector subspace of Ex.

Proposition 11.1. Every sub-bundle is a vector bundle such that the injection is a mor-
phism.

Example 11.3. Let F be a smooth distribution, then F is a sub-bundle of TM (whether
F integral or not).

Theorem 11.1. Every bundle over X (compact) is (isomorphic to) a sub-bundle of the
trivial bundle over X.

Definition 11.4. E → X is a vector bundle, and ϕ : Y → X continues,

ϕ∗(E) E

Y X

Φ

φ

.

Here
ϕ∗(E) := (u, y) ∈ E × Y : u ∈ Eφ(y)}.

π : ϕ∗(E)→ Y , (u, y) 7→ y. π−1(y) ≈ Eφ(y).

Proposition 11.2. ϕ∗(E) has the structure of a vector bundle, moreover, there is Φ :

ϕ∗(E)→ E, and Φ : (ϕ∗E)y → Eφ(y) is isomorphism.
ϕ∗(E) is called the induced vector bundle by ϕ.

Definition 11.5. The cocycle point of view.
Let π : E → X a vector bundle. Let {Ui}i∈I be a covering of X by trivializing neigh-

borhood.
E|Ui∩Uj

(Ui ∩ Uj)× E (Ui ∩ Uj)× E
ϕj

ϕi

ψij

ψij(x, u) = (x, ψij(x)(u)), where ψij : Ui ∩ Uj → GL(E).
For any x ∈ Ui ∩ Uj ∩ Uk, we have the cocycle condition

ψkix ◦ ψijx = ψkjx .
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Given a vector bundle and trivializing covering, we get the cocycle ψij : Ui ∩ Uj →
GL(E).

Theorem 11.2. Assume we have a covering {Ui} of X and a cocycle ψij : Ui ∩ Uj →
GL(E), then there is a vector bundle E → X whose cocycle is ψij.

Sketch of the proof. Define

V = ti∈I(Ui × E) = {(i, x, v) : i ∈ I, x ∈ Ui, v ∈ E}.

We need to glue back fibers over Ui ∩ Uj .
Let we introduce an equivalence relation on V ,

(i, x, u) ∼ (j, x, v) ⇐⇒ v = ψji(x)u.

The cocycle condition tells us this is an equivalence relation. Define E = V/ ∼.
We need to show that V is a topological space, and the topology on E is the quotient

topology. π : [(i, x, u)] 7→ x is a projection.

E ,F → X two vector bundles, let {Ui} be trivializing covering of E and F , ψijE :

Ui ∩ Uj → GL(E) and ψijF : Ui ∩ Uj → GL(E).
GL(E ⊕ F ) ⊃ GL(E)×GL(F ),

ψ̃ij =

(
ψijE

ψijF

)
,

satisfies the cocycle condition. The associated vector bundle is E ⊕ F and the fiber (E ⊕
F)x = E ⊕ Fx.

Exercise 11.2. E ⊗ F = Ex ⊗Fx, prove it with cocycles.

Let M be a manifold with atlas (Ui, Xi), Xi : Ui → O ⊂ Rn.

Ui ∩ Uj → GL(Rn)

x 7→ ϕji(x) = (TxX
j)(TxX

i)−1 ∈ GL(Rn).

An atlas gives ↪→ cocycle ↪→ a vector bundle structure on TM .

TM |Ui

ϕi−→ Ui × Rn.

φi(u) = {x} × (a1, · · · , an), u =
n∑
i=1

ai
∂

∂xi
.

Definition 11.6 (Smooth Vector Bundles over Manifolds). π : E → X smooth, E , X are
manifolds. We also need the trivializing maps are smooth.

The cocycle point of view, ψij : Ui ∩ Uj → GL(E) are smooth.

TM , ∧k(TM), T ∗M are smooth bundles. If E ,F , then E ⊕ F ... are smooth.
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11.2 Moser Theorem and Flow-Box

Let M be a compact oriented manifold of dimension n, ∂M = ∅.
Let ω ∈ Ωn(M), then ∫

M
ω = 0 ⇐⇒ ω is exact.

Theorem 11.3 (Moser). Let ω0 and ω1 be two volume forms on M . Assume that
∫
M ω0 =∫

M ω1, then there exists ϕ preserving the orientation, such that

ϕ∗ω0 = ω1.

Hint: use flows, find a vector field depending on time.

Exercise 11.3. Let ω be volume form on E a vector space of dimension n.

E
Ψ−→ ∧n−1(E∗), u 7→ iuω.

Prove that Ψ is an isomorphism.

Proposition 11.3. If ψt is 1-parameter of diffeomorphism then

d

dt
(ψ∗

tα)
∣∣∣
t=0

= LXα,

where X(m) = d
dt

∣∣
t=0

(ψ(t)(m)).

Proof of Moser theorem. Since
∫
M ω1−ω0 = 0, then there exists β such that dβ = ω0−ω1.

Set ωt = tω1 + (1 − t)ω0, t ∈ [0, 1]. Note that ωt is a volume form. By Exercise 12.3,
there is Xt a vector filed depending on time such that iXtωt = β. Hence

ω0 − ω1 = dβ = diXtωt = LXtωt.

Let φus :M →M is the flow with respect to Xt. Note first

φsu ◦ φut = φst .

With the proposition 12.1,

d

ds

∣∣∣
s=t

(
(φst )

∗ωt
)
= LXtωt = ω0 − ω1,

since d
ds

∣∣
s=t
φst (m) = Xt(m).

We now show that d
ds

∣∣
s=t

(
(φst )

∗ωs
)
= 0.

d

ds

∣∣∣
s=t

(
(φst )

∗ωs
)
=

d

ds

∣∣∣
s=t

(φst )
∗ωt + (φtt)

∗ d

ds

∣∣∣
s=t
ωs

= LXtωt + (ω0 − ω1)

= (ω0 − ω1) + (ω1 − ω0)

= 0.
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Finally, because (φst )
∗ = (φ0t )

∗ ◦ (φs0)∗,

0 =
d

ds

∣∣∣
s=t

(
(φst )

∗ωs
)
= (φ0t )

∗ d

ds

∣∣∣
s=t

(
(φs0)

∗ωs
)
,

hence d
ds

∣∣
s=t

(
(φs0)

∗ωs
)
= 0 since φ0t is a diffeomorphism. Now

ω0 = (φ00)
∗ω0 = (φ10)

∗ω1.

Theorem 11.4 (Existence of a flow-box). Let X be a vector field, let m such that X(m) 6=
0, then there is a chart (U,ϕ) at m such that ϕ∗(

∂
∂t) = X, where ϕ : U → O ⊂ R× E.

Proof. 1. Given X and m, there is a submanifold N of dimension n − 1 (n = dimM),
such that for any x ∈ N , X(x) /∈ TxN .

2. Produce Ψ a local diffeomorphism from N×]− ε, ε[→M such that Ψ∗(∂t) = X.
Let (φt) be the flow of X, then we define Ψ(x, t) = φt(x). We need to prove that Ψ is

a local diffeomorphism.
T(m,0)ψ = T(m,0)N ⊕R. Let u ∈ T(m,0)N , we have (T(m,0)Ψ)(u, 0) = u. T(m,0)Ψ(0, 1) =

d
ds

∣∣
s=0

Ψ(m, s) = X(m). Hence T(m,0)Ψ is invertible, by local immersion theorem, it is a
local diffeomorphism.

Proposition 11.4. F is a sub-bundle of E, that is, F is a closed subset of E and F ∩ Ex
is a vector space. Then F is a vector bundle over X.

Proof. It is enough to prove this property whenever E = E ×X a trivial vector bundle.
1. Show that dim(F ∩ Ex) is constant. (F is closed subset).
2. You want to find U ⊂ X such that FU can be trivialized.
Let x0 ∈ X, and P0 a subspace in E, such that P0 ⊕Fx0 = E.
Claim: there exists a neighborhood U of x0 such that for any x ∈ U , P0 ⊕Fx = E.
Let g be a euclidean metric on E. Assume there is (xi) → x0, by contradiction such

that P0 ∩Fxi 6= {0}. Let ui ∈ P0 ∩Fxi and |ui| = 1. Extracting a converging subsequence
to u0, then u0 ∈ P0 and u0 ∈ Fx0 (since F is closed), then we get a contradiction.

Then there is a trivialization of F|U ,

F|U
ψ−→ Fx0 × U, v ∈ Fx 7→

(
πx(v), x

)
,

where πx is the projection from Fx to Fx0 parallel to P0.
ψ is continuous, being the restriction of a continuous map π to a closed subset. π :

E = E × U → Fx0 × U .
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12 Connection

From now no, we speak about smooth real vector bundle, over smooth manifolds.
Space of sections of E → M is denoted by Γ(E). Special notation, Γ(TM) = χ(M),

Γ(∧k(T ∗M)) = Ωk(M).
Important construction: F = ∧k(T ∗M)⊗ E →M , the fiber of F at m is

Fm = ∧k(T ∗
mM)⊗ Em = {k − forms on TM with values in Em}.

Denoted by Ωk(M ; E) := Γ(∧k(T ∗M)⊗ E).
Goal: for any two points x, y ∈M , using an extra structure (Connection) and a curve

c from x to y, getting a linear isometry from Ex to Ey (Parallel Transport).

12.1 Connection and Parallel Transport

Definition 12.1. a (Koszul-) connection E →M is a linear map Γ(TM)×Γ(E)→ Γ(E),
(X,σ) 7→ ∇Xσ, satisfying for any f ∈ C∞(M),

(i) ∇fXs = f∇Xs.
(ii) ∇X(fs) = f∇Xs+ df(X)s.

Example 12.1. E = E × M the trivial bundle, then Γ(E) = C∞(M,E). The trivial
connection on E ×M is DXσ := (Dσ)(X). For any f ∈ C∞(M), DfXσ = (Dσ)(fX) =

fDσ(X). DX(fσ) = (Dfσ)(X) = df(X)σ + fDXσ.

Let ψ1, · · · , ψn be functions on M and
∑
ψ1 = 1. Let ∇1, · · · ,∇n be connection on

M , then ∇ :=
∑
ψi∇i is also a connection: ∇Xσ =

∑
ψi∇iXσ.

Proposition 12.1. If ∇ is a connection, (∇Xσ)m only depends on X,σ on a V (m).

Proof. Let X1 = X2 on a V (m) and σ1 = σ2 on a V (m). Let ψ ≡ 1 on V (m) and
Suppψ ⊂ U , then ψX1 = ψX2 and ψσ1 = ψσ2.

∇X1σ1 = ∇ψX1ψσ1 = ∇ψX2ψσ2 = ∇X2σ2.

Proposition 12.2. Every vector bundle admits a connection.

Proof. Let {Ui}i∈I be a trivializing cover on M , i.e. |U⟩ ≈ E × U⟩. Let {ψi}i∈I a partition
of unity associated to Ui.

Finally let Di be the trivial connection on E|Ui , then we define if X ∈ χ(M), σ ∈ Γ(E),

∇Xσ =

n∑
i=1

ψi(D
i
Xσ).

This is well-defined since Suppψi ⊂ Ui, and ∇ is a connection on E .
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Definition 12.2. Difference between two connection.
Let ∇1 and ∇2 be two connections on E → M , then there exists A ∈ Ω1(M,End(E))

such that
∇1
Xσ −∇2

Xσ = A(X)σ.

Proof. Let define B : TM × E → E , B(X,σ) = ∇1
Xσ−∇2

Xσ. Then B(fX, σ) = fB(X,σ)

and

B(X, fσ) = ∇1
X(fσ)−∇2

X(fσ) = fB(X,σ) + df(X)σ − df(X)σ = fB(x, σ).

Then B is a tensor. By the lemma below, there exists a section A of the bundle

TM∗ ⊗ E∗ ⊗ E = TM∗ ⊗ End(E) = Ω1(M,End(E)).

Lemma 12.1. Let E1, · · · , Ek,F be vector bundles over M . Let ψ be a k-multilinear map

ψ : Γ(E1)× · · · × Γ(Ek)→ Γ(F),

such that for any i, any f ∈ C∞(M),

ψ(σ1, · · · , fσi, · · · , σk) = fψ(σ1, · · · , σk).

Then there exists C, a section of

E∗1 ⊗ · · · ⊗ E∗k ⊗F = G,

such that
ψ(σ1, · · · , σk)m = Cm((σ1)m, · · · (σk)m).

We say ψ is a tensor.

Proof. If σi = σ′i on V (m), then ψ(σ1, · · · , σk) = ψ(σ′1, · · · , σ′k) on V (m). (Repeat the
proof about ∇Xσ.)

It is enough to prove the result on V (m), that is when Ei = Ei × U and Fi = F × U .
Let (aij)j∈Ii be a basis of Ei, σi =

∑
j
f ji a

i
j , then

ψ(σ1, · · · , σk)m =
∑ k∏

l=1

f jlk (m)ψ(a1j1 , · · · , a
k
jk
).

Then we define C :M → E∗1 ⊗ · · · ⊗ E∗k ⊗F as

Cm =
∑

a1,∗j1 ⊗ · · · ⊗ a
k,∗
jk
⊗ ψ(a1j1 , · · · , a

k
jk
).
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Proposition 12.3. If ∇ is a connection and A ∈ Ω1(M,End(TM)), then

∇+A : (X,σ) 7→ ∇Xσ +A(X)σ

is also a connection. Then the space of connection is an affine space.

Proposition 12.4. Let X be a vector field, σ a section of E, let m ∈ E and c a curve in
M with ċ(0) = Xm, then (∇Xσ)m only depends on Xm and the restriction of σ along c.

Proof. Locally, ∇ = D+A, where D is the trivial connection on U and A ∈ Ω1(U,End(E)).

(∇Xσ)m = (DXσ)m + (A(X)σ)m,

the latter one only depends onXm and σm since it is a tensor. And (DXσ)m = (Dmσ)(X) =
d
dt

∣∣
t=0

(σ ◦ c(t)).

Theorem 12.1 (Existence of Parallel Transport). Let c(t) : [a, b]→M be a curve on M ,
let u ∈ Ec(0), then there exists a unique u(t) section of E along c, such that

∇ċ(t)u(t) = 0.

Moreover, (i) if k ∈ R, then (ku)(tz) = k(u(t)), (ii) if u and v are two vectors in Ec(0)
then (u+ v)(t) = u(t) + v(t) (i.e. linear map from Ec(0) to Γ(c∗E)).

u(t) is called the parallel transport of u along c(t).

Proof. Let U be a neighborhood of c(t0) on which E is trivial E = E × U .

∇ċ(t)u(t)
∣∣
t=t0

=
d

dt

∣∣∣
t=t0

(u ◦ c(t)) +A(ċ(t0))u(t0),

where ∇ = D +A. Check that this does not depend on the choice of trivialization.
To prove the existence and uniqueness of u(t), it is enough to work locally solution of

d

dt
u(t) +A(ċ(t))u(t) = 0,

with the initial condition u(0) = u. This is a consequence of the existence and uniqueness
of solution of ODE on [a, b]. This is a linear equation hence (i) and (ii) holds.

Remark: The well-definition of A on c comes from the independent of the choice of
trivialization.

Definition 12.3. We define the Holonomy linear map Holc : Ec(0) → Ec(1), u 7→ u(1)

where u(t) is the parallel transport of u along c(t).
If α and β are two curves and α(1) = β(0), then

Holβ ◦Holα = Holβ∗α .

Theorem 12.2. Holc is a linear isomorphism, for c : [0, 1]→M
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Proof. Let c̃ : [0, 1] → M , c̃(t) = c(1 − t). Let u(t) be parallel section along c, then
ũ(t) = u(1− t) is a parallel section along c̃. In particular,

(Holc)
−1 = Holc̃ .

Recall the pull-back of vector bundle. Define ψ : X → Y , let π : E → Y , we defined
the vector bundle ψ∗E → X as

ψ∗E = {(u, x) ∈ E ×X : u ∈ Eψ(x)}.

If (Ui)i∈I is a trivializing cover of E|Ui = E × Ui with cocycle Ui ∩ Uj
φij

−−→ GL(E).
Then (ψ−1(Ui))i∈I is a trivializing cover of X for ψ∗E .

ψ−1(Ui) ∩ ψ−1(Uj)
ψ−→ Ui ∩ Uj

φij

−−→ GL(E).

ψ∗ϕij are the transition functions. These satisfy the cocycle condition hence ψ∗E is a
bundle.

What happens in a trivialization? In general if Oi is trivialization of E → Z, i.e.
E|Oi ≈ E × Oi. A section σ|Oi is a section of E|Oi , Oi → E with the compatibility
condition on Oi ∩ Oj , σj(x) = ψji(x)σi(x).

Induced section ψ∗ : Γ(E)→ Γ(ψ∗E), σ 7→ ψ∗σ, we can σ∗i = σi ◦ ψ. Then σ∗i satisfies
the compatibility condition with respect to ψ∗ϕij .

Remark 12.1. Not all sections of ψ∗E is induced sections. For example X → Y = {0}.

Definition 12.4. Induced connection.
Let E → Y be a vector bundle over Y , ∇ be a connection on E, and ψ : X → Y . There

exists a unique connection ψ∗∇ on ψ∗E such that if u ∈ TmX, σ is a section of E defined
on V (ψ(m)), then

[(ψ∗∇)u(ψ∗σ)]m = ψ∗[∇Tψ(u)σ]ψ(m).

(ψ∗∇)u(ψ∗σ) = ψ∗(∇ψ∗uσ).

Proof. Let ∇1 and ∇2 be two connection satisfying ∇1
u(ψ

∗σ) = ∇2
u(ψ

∗σ) = ψ∗(∇ψ∗uσ).
Let write ∇1 −∇2 = A ∈ Ω1(X,End(ψ∗E)). Thus A satisfies A(u) = 0 for every u ∈ TX,
thus A = 0, hence ∇1 = ∇2.

Existence part: First case assume that E → Y is trivial, E = E × Y . Any connection
on E is D+B, where B ∈ Ω1(Y,End(E)). Now ψ∗E = E×X. Let us define ∇1 on E×X,
∇1 = D + ψ∗B, where ψ∗B(u) = B(Tψ(u)).

Let us check that

∇1
u(ψ

∗σ) = Dx(σ ◦ ψ)(u) + (ψ∗B)(u)(σ(ψ(x)) = (∇Tψ(u)σ)ψ(x).

For the general case, take a trivializing cover of Y = {Ui}, then on ψ−1(Ui) ⊂ X, we
define ∇i = ψ∗(∇|Ui). Then by uniqueness, ∇i = ∇j on ψ∗(∇|Ui) ∩ ψ∗(∇|Uj ). We define
ψ∗∇ = ∇i on Ui.
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Now a section along c : [a, b]→M is a section of the bundle c∗E → [a, b], u(t) = c∗u(t).
We make it more clear,

∇ċ(t)u(t) = 0 ⇐⇒ (c∗∇)∂tc∗u = 0.

Theorem 12.3. Let E → [a, b] be a vector bundle with a connection ∇, then given any
u ∈ Ea, there exists a unique section u(t) such that

u(a) = u, ∇∂tu(t) = 0.

Proof. It is enough to prove this result on [t0 − ε, t0 + ε]. Given u ∈ Et0 , there exists u(t)
such that u(t0) = u and ∇∂tu = 0 for any t ∈ [t0 − ε, t0 + ε].

Choose ε such that E|[t0−ε,t0+ε] is trivial: E × [t0 − ε, t0 + ε]. Set ∇ = D +B and

∇∂tu = 0 ⇐⇒ d

dt
u(t) +Bt(∂t)u(t) = 0.

In other words, the curve u(t) ∈ E satisfies

u̇(t) + C(t) · u(t) = 0,

where C(t) = Bt(∂t) : [t0 − ε, t0 + ε]→ End(E).

Now we have finished the proof of the existence of parallel transport.

Corollary 12.1. Any bundle E → R is trivial.

Proof. Let u1, · · · , uk be a basis of E0, define Rk × R→ E ,(
(a1, · · · , ak), t

)
7→
∑

aiui(t),

where ui(t) is the parallel transport of ui.

Exercise 12.1. Every vector bundle over a contractible open set is trivial.

12.2 Connection and curvature

Another point of view on parallel transport: Horizontal distribution.
Let E →M and E itself is a manifold.

Definition 12.5. An horizontal distribution is a distribution Fu ⊂ TuE such that

Tπ : Fu → Tπ(u)M,

is an isomorphism.
Ker(Tuπ) = Tu(Eπ(u)) is called the vertical distribution Vu.

We have (i) dimFu = dimM , Fu ∩Ker(Tπ) = {0}.
Fu is an trivialization distribution iff ∀u ∈ E , Fu ⊕ Vu = TuE .
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Proposition 12.5. A connection ∇ on E defines an horizontal distribution F∇ such that,
for u : [a, b]→ E, u̇(t) ∈ F∇

u(t) iff u(t) is parallel along the curve c(t) = πu(t).

Example 12.2. E = E ×M and D is the trivial connection. u(t) is parallel along c(t),
iff u(t) is constant along c(t), as a map [a, b]→ E,
iff curve u(t) is tangent to the distribution {0} × TM of T (E ×M),
iff u is tangent to the distribution F(v,m) = {m} × TmM .

Proof of proposition. Consider a trivialization E|Ui = E × Ui and ∇ = D + A. Let u :

[a, b]→ E|Ui , u(t) =
(
v(t), c(t)

)
, where v(t) ∈ E and c(t) ∈ Ui.

∇ċu(t) =
( d
dt
v(t) +Ac(t)(ċ(t)) · v(t), c(t)

)
,

hence ∇ċu(t) = 0 iff v̇(t) +Ac(t)(ċ(t)) · v(t) = 0.
Let

F∇
(v,x) = {(w, γ) ∈ E × TxM : w +Ax(γ)v = 0}.(

v(t), c(t)
)
∈ E|U = E×U is tangent to F∇, iff

(
v̇(t), ċ(t)

)
∈ F∇, iff v̇(t)+Ac(t)(ċ(t)) ·

v(t) = 0, iff ∇ċu(t) = 0.

F∇ is integrable, iff ∇ is locally trivial, iff there exists trivialization E = E × U in
which ∇ = D, iff R∇ = 0, R∇ ∈ Ω2(M,End(E)).

In general, ω = Tr
(
R∇ ∧ · · · ∧R∇) is a closed 2n form on M . Its cohomology class

only depends on E →M .

Lemma 12.2. ∇ on π : E → M and X ∈ χ(M). There exist a unique vector field Y on
E such that (i) Y is horizontal (Yu ∈ F∇

u ), (ii) (Tuπ)(Yu) = Xπ(u).

Definition 12.6. Y is the horizontal lift of X.

Proof. Tuπ is an isomorphism between F∇
u and TxM . Locally, E = E ×M trivial, then

Yu = (−Ax(X)u,X).

Lemma 12.3. Let X ∈ χ(M) with flow ϕt, Y ∈ χ(E) with flow ψt is the horizontal lift of
X. Then (i) π ◦ψt = ϕt ◦ π, (ii) t 7→ u(t) = ψt(u) is parallel along the curve c(t) = ϕt(x).

Proof. Let u ∈ E and x = π(u). Define c̃(t) = π ◦ ψt(u), then

d

ds

∣∣∣
s=t
c̃(s) = (Tψt(u)π)

(
d

ds

∣∣∣
s=t
ψs(u)

)
= Tψt(u)π(Yψt(u)) = Xc̃(t).

Then c̃(t) is an orbit of X, hence c̃(t) = ϕt(x).

Definition 12.7. A connection ∇ is flat if ∇ = D in a local trivialization.

Theorem 12.4. F∇ is integrable iff ∇ is flat.
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Proof. If ∇ is flat. In a trivialization ∇ = D and E = E×M . The horizontal distribution
is

F∇
(u,m) = {(−A(x)u,X) : X ∈ TmM} = {0} × TmM.

In that case the horizontal distribution is integrable.
Assume F∇ is integrable. Let O ⊂ M and O ≈] − 1, 1[n⊂ M . Let Xi = ∂

∂xi
the

coordinate vector fields. Let Yi be the horizontal lifts of Xi, let ϕit the flow of Xi and ψit

the flow of Yi.

Lemma 12.4. [Yi, Yj ] = 0 (iff ψit ◦ ψ
j
s = ψjs ◦ ψit).

Let u ∈ E , let N 3 u be the submanifold such that ∀n ∈ N , TnN = F∇
n . Hence

∀n ∈ N , Tπ is an isomorphism from TnN to Tπ(n)M . We can find an open set O 3 n in
N such that π : O → π(O) is a diffeomorphism (local immersion theorem). From now on,
redefine N = O. Set Ỹi = Yi|N ,

π∗[Ỹi, Ỹj ] = [π∗Ỹi, π∗Ỹj ] = [Xi, Xj ] = 0.

This means that Tπ([Ỹi, Ỹj ]) = 0, hence that [Ỹi, Ỹj ] = 0 (since π|N is a diffeomorphism).
[Yi, Yj ]u = [Ỹi, Ỹj ]u because N is a submanifold and Yi tangent to N .

Lemma 12.5. If W a submanifold of M . If X,Y are vector fields on M , such that
Xw, Yw ∈ TwW for w ∈W , then [X,Y ]|W = [X|W , Y |W ] (Hint: use a chart).

Proof. Since W is a submanifold of M , for w ∈W ⊂M , there is a chart (U,ϕ) such that
ϕ(U ∩M) ⊂ Rk ⊂ Rn. Set X = Xi

∂
∂xi

and Y = Yj
∂
∂xj

. Since X(w) and Y (w) is in TwW

for w ∈ M , we know that Xk+1(w) = · · · = Xn(w) = 0 and Yk+1(w) = · · · = Yn(w) = 0

for any w ∈W .

[X,Y ] =

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
∂

∂xj
= (X(Yj)− Y (Xj))

∂

∂xj
.

For j ≥ k + 1, since Yj |W = 0 and X(w) ∈ TwW for any w ∈ W , we have X(Yj)(w) = 0.
Ditto for Y (Xj)(w) = 0, j ≥ k + 1. Hence we’ve proved that

[X,Y ]w =
∑

1≤j≤k
(X(Yj)− Y (Xj))

∂

∂xj
∈ TwW,

∀w ∈ W . Note that X|W =
∑

1≤j≤k
Xi

∂
∂xi

and Y |W =
∑

1≤j≤k
Yi

∂
∂xi

and [X|W , Y |W ] =

[X,Y ]|W .

Back to original proof. Set O = ×]− 1, 1[n, we define the trivialization E0×O
Φ−→ E|O

by Φ(u, t1, · · · , tn) = (ψ1
t1 ◦ · · · ◦ ψtn)(u).

We will prove that (i) Φ is linear, in particular, Φ−1 is a trivialization. (ii) Given a
curve c(s) in O, u ∈ E0 then Φ(u, c(s)) is horizontal.

We first prove (ii).
c(s) =

(
ϕ1
t1(s)
◦ · · · ◦ ϕntn(s)

)
(0).
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u(s) := Φ(u, c(s)) =
(
ψ1
t1(s)
◦ · · · ◦ ψntn(s)

)
(u).

From Lemma 12.3, πu(s) = c(s). d
du

∣∣
t=s
u(t) =

∑
ṫi(s)Yi(u(s)). Indeed, we can put ψiti in

the first place for ∂
∂ti

(See Proposition 10.6).
Now we have proved that s 7→ Φ(u, c(s)) is horizontal. u 7→ Φ(u, c(s0)) = Holc(s0)(u)

is linear. Now F∇
u = {(0, X) : X ∈ TM} hence ∇ is flat.

Definition 12.8. Given ∇ a connection on π : E → M , the curvature tensor χ(M) ×
χ(M)× Γ(E)→ Γ(E) by

R∇(X,Y )σ = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ.

Lemma 12.6. (i) R(X,Y )σ = −R(Y,X)σ.
(ii) R(fX, Y )σ = fR(X,Y )σ, for f ∈ C∞M .
(iii) R(X,Y )fσ = fR(X,Y )σ, for f ∈ C∞M .

Corollary 12.2. Given ∇, there exists R∇
0 ∈ Ω2(M,End(E)) such that(

R∇(X,Y )σ)m = (R∇
0 )m(Xm, Ym)σm.

In a trivialization, E|U = E × U and ∇ = D +A.

Lemma 12.7. R∇(X,Y )σ = dA(X,Y )σ + [A(X), A(Y )]σ.

Proof.
R∇(X,Y )σ = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ.

∇[X,Y ]σ = L[X,Y ]σ +A([X,Y ])σ.

∇X∇Y σ = ∇X(Dσ(Y ) +A(Y )σ)

= ∇X(LY σ) + (LXA(Y ))σ +A(Y )LXσ

= LXLY σ +A(X)LY σ ++(LXA(Y ))σ +A(Y )LXσ +A(X)A(Y )σ

Similarly,

∇Y∇Xσ = LY LXσ +A(Y )LXσ ++(LYA(X))σ +A(X)LY σ +A(Y )A(X)σ.

With the fact, if ω ∈ Ω1(M), then dω(X,Y ) = LX(ω(Y )) − LY (ω(X)) − ω([X,Y ]),
we’ve done the proof.

Theorem 12.5. ∇ is flat, iff R∇ = 0.

Proof. If ∇ is flat, then A = 0 hence R∇ = 0.
If R∇ = 0, show that F∇ is integrable. Let Xi =

∂
∂xi

be coordinate vector fields on V

and Yi be the horizontal lift.

(Yi)u =
(
−A(Xi) · u,Xi

)
.
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Lemma 12.8. If R∇ = 0, then [Yi, Yj ] = 0.

Consequence F∇ is integrable and thus ∇ flat.

[Yi, Yj ]u = [
(
−A(Xi) · u,Xi

)
,
(
−A(Xj) · u,Xj

)
]

= (− ∂

∂xi
A(Xj)u+

∂

∂xj
A(Xi)u− [A(Xi), A(Xj)u], 0)

= (−dA(Xi, Xj)u− [A(Xi), A(Xj)]u, 0)

= (−R∇(Xi, Xj)u, 0).

Here we use the fact [Au,Bu] = −[A,B]u (See Exercise 10.4).

Theorem 12.6. If ∇ is flat, if c(t) is homotopic to c̃(t) with fixed endpoints, then

Holc = Holc̃ : Ec(0) → Ec(1).

Let E be a R-vector bundle with a connection ∇.

P̂∇
k (X1, · · · , X4k) =

∑
σ∈S2k

(−1)σ Tr
(
R∇(Xσ(1), Xσ(2)) · · ·R∇(Xσ(4k−1), Xσ(4k))

)
Let E be a C-vector bundle, J ∈ γ(E) such that J2 = −1.

ĉ∇k (X1, · · · , X2k) =
∑
σ∈Sk

(−1)σ Tr
(
R∇(Xσ(1), Xσ(2)) · · ·R∇(Xσ(2k−1), Xσ(2k))

)
Theorem 12.7. The forms P̂∇

k and ĉ∇k are closed (called Pontryagin, Chern classes).
Their cohomology classes [P̂∇

k ] ∈ H4k(M) and [ĉ∇k ] ∈ H2k(M) only depends on E are
called the Pontryagin class and the Chern class.

Example 12.3. TS2 has complex structure and c1(TS2) 6= 0. Hence TS2 is not trivial.
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13 Group action

13.1 Properly discontinuous action without fixed points

A covering is a map p : X → Y , where X and Y are topological spaces, such that for any
y ∈ Y , there exists U ∈ V (y) such that p−1(U) =

⊔
z∈Z
Oz, where Oz are open sets and

p : Oz → U is a homeomorphism.
If Γ is a group acting on X, with a properly discontinuous action without fixed

points that
(i) ∀γ ∈ Γ, γ : x→ γx is a diffeomorphism (homeomorphism).
(ii) ∀x ∈ X, there exists U ∈ V (x), such that γU ∩ U 6= ∅ will indicate γ = id.

Remark 13.1. properly discontinuous action.
For every compact set K, #{γ : γK ∩K 6= ∅} <∞.

Theorem 13.1. In topology category, there is a topology on Γ\X, such that p : X → Γ\X
is a covering.

Proof. Recall the quotient topology on Γ\X is give by U is an open set in Γ\X if p−1(U)

is open.
We define Uγ := γ · U which is an open set and Uγ ∩ Uγ′ = ∅ if γ 6= γ′.
We want to show p is covering: for any y ∈ Γ\X, there exists V ∈ V (y) such that

p−1(V ) =
⊔
z∈Z

Vz and p : Vz → V is a homeomorphism.

Let y ∈ Γ\X, let x such that p(x) = y. Let U ∈ V (x) such that γ 6= γ′ in Γ,
Uγ ∩ Uγ′ = ∅. Let V = p(U), then

p−1(V ) = p−1(p(U)) =
⊔
γ∈Γ

Uγ ,

is an open set hence V is open in Γ\X. Indeed, let z ∈ p−1(p(U)), p(z) ∈ V = p(U), then
p(z) is an orbit {γα}α∈Γ which intersects U with α ∈ U .

Then we also need to check that p : Uγ → V is a homeomorphism. It is obvious that
this map is bijective and continuous. We only need to show that p|−1

Uγ
is continuous, which

is similar to the proof of the openness of V .

Remark 13.2. We say U is good if U is an open set in X such that ∀γ 6= id, γU ∩U = ∅.

Theorem 13.2. In differential geometry category, there is a manifold structure on Γ\X,
such that p : X → Γ\X is a covering, p is smooth and a local diffeomorphism.

Proof. X is σ-compact then Γ\X is σ-compact.
We can find an atlas {(Ui, φi)} of X such that Ui are good. Because Ui is good: Ui →

p(Ui) is a homeomorphism. We define charts of Γ\X by {(Vi = p(Ui), φi ◦ p−1
i = p|−1

Ui
}. It

remains to prove these charts are compatible.
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For any y ∈ Γ\X, and y ∈ Vi ∩ Vj , we say xi = p−1
i (y) and xj = p−1

j (y). notice that
xi may not equal to xj , but we have an element γ ∈ Γ such that xj = γxi. The transition
map is

(φj ◦ p−1
j ) ◦

(
φi ◦ p−1

i

)−1
= φj ◦ p−1

j ◦ pi ◦ φ
−1
i = φj ◦ γ ◦ φ−1

i ,

around y, hence differential.

Exercise 13.1. Check Γ\X is Hausdorff.

Exercise 13.2. Γ is a finite group and X is compact, show that if for any γ ∈ Γ\ id, and
for any x, we have γx 6= x, then Γ acts properly discontinuously on X.

Example 13.1. Γ = Z/2Z = {−1, 1}. Γ acts on Sn = {u ∈ R : ‖u‖ = 1}. Γ\Sn is Pn.

13.2 Action of group of diffeomorphisms

Theorem 13.3. Let M be a connected manifold. Let G = {diffeomorphism of M}. For
all p ∈ N, G acts transitively on Mp∗ := {(m1, · · · ,mp) : ∀i 6= j,mi 6= mj}.

That is, given (m1, · · · ,mp), (q1, · · · , qp) ∈ Mp∗, then there is a diffeomorphism ϕ of
M such that ϕ(mi) = qi for any 1 ≤ i ≤ p.

1. Show that if B is the open ball in Rn. Given x ∈ B, there is a O ∈ V (x), for any
y ∈ O, there is ϕ a diffeomorphism of B such that (i) ϕ(x) = y and (ii) ϕ is an
identity on a neighborhood on ∂Bn.

For ϕ(x) = y we first define the transition map ϕ0(z) = z + u, where u = y − x
small enough.

Let ψ be the function such that ψ is 1 on a neighborhood of x and 0 on a neigh-
borhood of ∂Bn. We define ϕ(z) = z + ψ(z)u.

Since Dzϕ = I +uAψ,z, for u small enough, Dzϕ is non-singular. Hence ϕ is local
diffeomorphism.

Now we prove that for u small enough, ϕ is injective. If ϕ(z1) = ϕ(z2), i.e.
z1+ψ(z1)u = z2+ψ(z2)u. We know that there exists K0 such that ψ is K0-Lipschitz,
that is

|ψ(z1)− ψ(z2)| ≤ K0‖z1 − z2‖.

Then we just need to choose ‖u‖ ≤ 1
2K0

.

Since ϕ is local diffeomorphism and injective, we say it is a diffeomorphism.

We can only say that ϕ : B → ϕ(B) is a diffeomorphism. We also need to prove
that ϕ is surjective. We can prove it by flow of diffeomorphism. xxx.

2. Let us fix m = (m1, · · · ,mp) ∈Mp∗,

Gm = {(q1, · · · , qp) ∈Mp∗ : ∃ϕ diffeomorphism such that ϕ(mi) = qi}.
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Actually Gm is just an orbit of G . We will prove Gm is open.

For any i, let Oi be a neighborhood of qi such that

(i) Oi ∩ Oj if i 6= j.

(ii) Oi is diffeomorphism to a ball.

(iii) Let Ui ⊂ Oi with the following property. For any zi ∈ Ui, there is a
diffeomorphism ϕi such that ϕi(qi) = zi and ϕi is the identity on neighborhood Vi

of ∂Oi.

Let ϕ : M → M defined by ϕ = ϕi on Oi and ϕ = id on M \ t(Oi \ Vi). Then ϕ

is a diffeomorphism.

Now we’ve proved that for any (q1, · · · , qp) ∈ Om, there is a neighborhood U1 ×
· · · × Up ⊂ Mp∗, for any zi ∈ Ui there is a diffeomorphism ψ such that ψ(qi) = zi.
Since (q1, · · · , qp) ∈ Gm, there is ϕ such that ϕ(mi) = qi, hence ψ ◦ ϕ(mi) = zi, i.e.
(z1, · · · , zp) ∈ Gm.

3. Gm is closed. Note that what we’ve proved is that every orbit of G on Mp∗ is open.
Then

Gm =Mp∗ \
⋃
q /∈Gm

Gq.

4. We will show that for dimM ≥ 2, Mp∗ is connected. Hence Gm =Mp∗.

Example 13.2. Counter example for M not connected.
Set M = S2 t R2, the diffeomorphism group is not transitive. Since a diffeomorphism

group sends a connected component to a connected component and a compact set to compact
set. Then a point in S2 can only be mapped into S2.
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