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1 Submanifold

Definition 1.1. ¢ is a C" map from U € & to V € %, U,V are open sets.

1. ¢ is a diffeomorphism if ¢ is a bijection from U to ¢p(U), ¢ is of class C" and
¢~ is also of class C".

2. If v € U, ¢ is an immersion atl x, if Dy¢ is injective (<).

3. Ifx €U, ¢ is a submersion at x, if D¢ is surjective (> ).

Theorem 1.1 (Inversion theorem). If ¢ is a C" map from U € & toV € F, U,V are
open sets. If x € U and D, is a bijection, then ¢ is a diffeomorphism in a neighborhood

of .

Definition 1.2. Let & be an affine space, (U, X) is a chart, when U is an open set in
&, X is a map into some open set in R"™ and X is diffeomorphism from U to X (U).
X = (x1, -+ ,x,) the coordinate of the chart, U the domain of the chart.

Theorem 1.2 (Immersion theorem). Let ¢ : 0 — F such that ¢ is an immersion at
x, there is a neighborhood U > = and a chart (V,X) at ¢(z) with ¢(U) C V, such that

X o ¢ is a restriction of an affine injective map from U to R".



Proof. Set f = X o ¢ and treat f from RP to R", f = (f1,---,fn). Then we define

g = (yla"' y Yps Yp+1, -+ 7y7l)7 Yy = (yluu' 7yp) and F(g) = (fl(y)a 7fp(y)7fp+1(y> +
Yp+1,- - ufn(y)+yn)
Df

('rla"' 7:1:17707"' 70) :detDiy('r) 7é0

DF
det —
Dy

Then by inverse theorem, there is a neighborhood Uofz = (1, ,2p,0,---,0) such that
G : F(U) — U is the inverse of F. Note that F(yy, - - 2 Yp,0,-++,0) = f(y1,--- ,yp), hence
(i, ,Yp,0,---,0) =Go f(y1, -~ ,yp) for (y1,--+ ,yp,0,---,0) € U which equivalent to
(y1,-- ,yp) € UNRP =: U, which suggests f is injective. O

Corollary 1.1. For smooth map ¢ : M — N, where M and N are manifolds, if ¢ is
an immersion at © € M, there is a neighborhood U > z and a chart (V,X) at ¢(z)
with ¢(U) C V, such that the image of (X o ¢)|y is an open subset in RP C R™, where
p=dimM, n=dimN.

Theorem 1.3 (Submersion theorem). Let ¢ : 0 — F such that ¢ is an submersion
at x, there is a chart (U,Y) at x such that ¢ oY~ is a restriction of an affine surjective

map.

Proof. Similarly, consider F(y1, -+ ,yn) = (fi(y), -, [p(Y): Yp+1, - s Un)- O

Theorem 1.4 (Constant rank theorem). Let ¢ : 0 — F, O open set in &, assume that

Dy¢ has a constant rank for y in a neighborhood of x. There is a chart on a neighborhood
(U, X) of ¢(x) and (V,Y) of x, such that X o oY1 is (a restriction of) an affine map.

Definition 1.3. Submanifolds of affine spaces.

M C & is a submanifold if Yx € M, there exist a chart (U, X) at x such that
X(MNU) is an open set of a vector sub-space in R™.

The dimension of M is defined to be the dimension of X(M NU)

dim(M) == dim(X (M N U)).

Theorem 1.5.
1. Let M be a submanifold in &, if ¢ : O — F is a diffeomorphism, (M N O) is a
submanifold.
2. Let ¢ be a submersion along ¢~ '(y), where ¢ : O — F > y. Then ¢ '(y) is a
submanifold.
dim ¢~ '(y) = dim & — dim .Z.

3. Let ¢ be an immersion form 0 C & to F at x, then there exists an open set U 3 x

such that ¢(U) is a submanifold.

dim¢(U) = dim &.



Remark 1.1. If ¢ is diffeomorphism from U to V, if (W, X) is chart with W C V, then
(¢~ (W), X 0 @) is a chart.

Definition 1.4. Tangent space of a submanifold.

Let curve c € C*° :]a,b[— &,

&(to) = lim <C(t)c(tO)> €E.

t—to t— to

Let M be a submanifold in &, then
Ty M = {¢(0) for curves c: [a,b] 50 in & such that Vt, c(t) € M,c(0) = x}.

Theorem 1.6.
1. Let ¢ be a diffeomorphism, and M a submanifold

T¢(1’)¢(M) = Dmd)(TxM)

2. If M is an open set in an affine subspace of &, then T, M 1is the underlying vector
space of M.
3. If ¢ is a submersion along ¢~ *(y),

T.¢ " (y) =ker(De0p),  ¢(x) =y.

4. If ¢ is an immersion at x,

T(xyo(U) = Im Dy .



2 Manifold

Definition 2.1. All topological spaces X considered are
1. Hausdorff (séparé en francais).

2. o-compact: Countable union of compact sets.

Definition 2.2. Let M be a topological space, a chart on M is a part (U, X) where
1. U is an open set in M (called the domain).

2. X = (x1,-+,xp) is a homeomorphism from U to an open set in R™.

Definition 2.3. Two charts (U, X) and (V,Y) are C¥ compatible if Y o X1 : X(U N
V) = Y(UNV) is a C* diffecomorphism.

Definition 2.4. f:U — R is a C* function w.r.t. X if fo X! is CF.

Proposition 2.1. If (U, X) and (V,Y) are CF compatible, f defined on UNV. Then f
is C¥ w.rit. (UNV,X) <= f being C* w.rt. (UNV,Y).

Proof.
foXt=(foY Ho(YoXx™).

O]

Definition 2.5. If M is a topological space. An atlas on M is a collection of charts
U = {(U;, X;) }ier such that (i) | JU; = M and (i) all charts are pairwise C* compatible.

Definition 2.6. The atlases % and ¥ are C* compatible if any chart of % is C*
compatible with any chart of V. (Equivalently, % UV is still an atlas.)

Definition 2.7. A C* manifold is a topological space M (Hausdorff and o-compact)

equipped with an equivalence class (w.r.t. C* compatibility) of atlas.

Definition 2.8. A C* chart (U, X) on a manifold is a chart which is compatible with any

atlas defining the manifold structure.
Proposition 2.2. If M is a manifold, an open set U in M is also a manifold.
Proposition 2.3. If M and N are manifolds, then M x N is a manifold.

Definition 2.9. A function on ¥ C M is C* if for every x € ¥, there exits a C* chart
on M, (U, X) withz €U, foX 1 is CF at X(x).

Example 2.1. If (U,X) is a chart, X = (x1, -+ ,2p). x1, - ,Z, are the coordinates

functions on U, then x; are smooth functions on U.

Definition 2.10. Let M % N be a map between two (smooth) manifolds. The ¢ is smooth
at © € M if for every smooth function f defined on a neighborhood of ¢(x), then f o ¢ is

smooth at x.



Proposition 2.4. We have two notions of smooth map ¢ : U C R" — V C R":
(7). © smooth as map between manifolds.
(ii). @ is smooth as a classical notion.

We will prove these two notions coincide.

Proof. <: Let f be a smooth function at ¢(x), then f o ¢ is smooth (composition of
smooth function).
=: Assume ¢ : U — V is smooth, we can find ¢ = (@1, -+, ¢p), where p; = x; 0 ¢ is
the coordinate functions on V. Thus ¢; is smooth, then ¢ is smooth.
O

Lemma 2.1. If f1,- -, fn are smooth functions M — R, g is a smooth function R™ — R,
then g(f1,---, fn) is a smooth function on M.

Proposition 2.5. ¢ is smooth at x, is equivalent to, there exits a chart (U, X) where U
a neighborhood of ¢(x), X = (z1,--+ ,o,) and x; 0 ¢ is smooth on ¢~ 1(U).

Proof. = is by definition.
foo=(foX Ho(Xog)=(foX (xi0¢, - ,zn00).
O

Proposition 2.6. M SN Bw. If ¢ is smooth at x, v is smooth at ¢(x), then 1) o ¢

1s smooth at x.

Proof. Let f be a smooth function on a neighborhood of ®yo¢(x), then g = f o1 is smooth,
then g o ¢ is smooth. O

Proposition 2.7. ¢ : M — N is smooth at x, is equivalent to, there exists (U, X) a chart
at  and (U,Y) at y = ¢(x), such that Y o po X! is a smooth map.

Proof. <: Let f be a function smooth at ¢(z), we shall show that f o ¢ is smooth at x.
fopoX t=(foY Ho(YogpoX1

is smooth, hence f o ¢ is smooth.

=: Let g be a function smooth at ¢(z) € Y.
go(YogboX_l) = (goY)o¢o)(_17
is smooth at X (x). O

Exercise 2.1. ¢ : M — N is smooth at x, is equivalent to, for any (U, X) a chart at x
and (U,Y) at y = ¢(x), we have Y o p o X1 is a smooth map.

Proof. Just by changing of charts. O



Exercise 2.2. N is a submanifold of R", prove that i : N < R"™ is a smooth map.

Proof. Since N is a submanifold of R", for any « € N, there is a chart (U, X) such that
X(UNN)=RP CR" Note that (U N N, X|y) is a chart on N as a manifold.

Thus, i = X! o X|x around z is smooth. O
Exercise 2.3. M x N & M is a smooth map.

Proof. For any point (z,y) € M x N, there is a chart (U x V, X) around (z,y) and a chart
(V,Y) around = € M, where Y (m) = X (m,0) for any m € M.
Hence Yopo X~ : R™*" — R™ is a projection, (z!,--- ,2™+") s (2!,.-- &™), which

is smooth. Then p is smooth. O
Exercise 2.4. If (U, X) is a chart, then X and X~! are both smooth.

Proof. For any smooth function f around X(x) € R", we need to show that f o X is
smooth around z € U. We consider the chart (U, X), and we have (fo X)o X! = fis
smooth on X (U).

For any smooth function g around x € U, we need to show that g o X! is smooth
around X (z) € X (U). Since g is smooth around =z, there is a chart (V,Y) around x such
that goY ! is smooth around Y (z). Now go X! = (goY 1) o(YoX~!)is a composition

of smooth maps, hence smooth. ]

Definition 2.11. ¢ : U C M — V C N, ¢ is a diffeomorphism if and only if ¢ is

1

bijective, ¢ is smooth and =" as well.

X is a diffeomorphism if (U, X) is a chart.

Definition 2.12. ¢ is a immersion at x, is equivalent to, there exist (U, X) and (V,Y)
charts at x and o(z) such that'Y o po X~ is an immersion.
It is also equivalent to, for any (U, X) and (V,Y) charts at © and p(x), we have

Y opo X! is an immersion.
Definition 2.13. Same definition for the submersion.

Remark 2.1. £ is an immersion from U C R™ to V. C R", then ¢g o & o ¢1 is also an

immersion if ¢o and ¢1 are diffeomorphisms.
Example 2.2. M x N 2y M is a submersion. M — M x z C M x N is an immersion.

Definition 2.14. V' a submanifold of a manifold M if Ve € V, there is a chart (U, X)
at x € M such that X(V NU) is a submanifold.

Definition 2.15. ¢ : M — N is an embedding if
(i) @ is an injective immersion.

(ii) ¢ is an homeomorphism onto its image.



Example 2.3. Topologist’s sine curve.

@ : (=00, 0] — R? is injective and immersion but not an embedding.
Exercise 2.5. If M is compact and @ is an injective immersion, then o is an embedding.
Proof. ¢ brings a closed set onto a closed set in p(M). O
Definition 2.16. We say ¢ is proper if o~ *(K) is compact for any compact set K.
Example 2.4. x — arctanz is not proper.
Proposition 2.8. ¢ is an injective immersion and ¢ is proper, then ¢ is an embedding.

Proof. We will show that ¢ : M — N brings closed set to closed set.

First there is a collection of compact sets { K, } of N with K,, C K41, such that UK,, =
N. Then since ¢ is proper, ¢ !(K,) are compact and M = ¢ }{(N) = o }(UK,) =
Up Y(K,).

For any closed set C' in M, there is a positive integer m such that C C ¢~ }(K,,),
hence p(C) C K,,. We show that ¢(C) = ¢(C).

For any y € ¢(C), there is a sequence {z,} C C such that y = lim¢(z,). Since C

is compact, there is a subsequence {xj, } such that they converge to zyp € C. By the

continuity of ¢, we have

o(z0) = lim p(zr,) =y,

hence y € ¢(C), which shows that (C) C ¢(C). O

Exercise 2.6. If ¢ is an embedding then (M) is a submanifold, and ¢ is a diffeomor-
phism M — @(M).

Proof. By the immersion theorem, there exists W C M, W € V(y) with ¢(y) = x such
that (W) is a submanifold.

We can always assume by taking W smaller that ¢(W) C U. Then we know that
e(W) = @(M) N O, where O open in N. Then we have o(W) = o(M)NONU. O



3 Examples

3.1 Projection Space

Definition 3.1. Let V' be a vector space with dimV < oco. A line L is a vector space in
V with dim L = 1. V is a vector space over any filed K (here K is R or C). We define the
Projective Space

P(V)={L: L lines in V'}.

1. Show that P(V') is in bijection with V' \ {0} /K*.

Proof. Consider ¢ : V'\ {0}/K* — P(V), [v] = Kv. Then it suffices to show ¢ is bijection,

which is obvious. O
2. Define a topology on P(V).

Definition. U is open in P(V) iff #=1(U) is open, here 7 : V' \ {0} — P(V). O
2.1 P(V) is Hausdorff?

Proof. For any two different points L, M € P(V), we intersect L, M with S(V) to get
x1,%2,Y1,y2. Then we can find r > 0 such that B,(x1), By(x2), Byr(y1), Br(y2) do not
intersects each other. Hence we consider the cones generated by B, (x1), B.(x2) and by
B, (y1), Br(y2), with origin being vertex, calling C; and Cy. Then C;\ {0} and Cy\ {0} are
open in V'\ {0} and they don’t intersect. Thus, we find two separate open sets 7(C, \ {0}
and 7(Cy \ {0}) in P(V') which contains L and M respectively.

0

2.2 P(V) is compact.

Proof. We know S(V') is compact. For any open covering % = {U; }ier of P(V'), we have
7Y %) = {771 (U;)}ics is an open covering of V' \ {0}. Moreover, 7= 1(%) NS(V) =
{7=Y(U;) N'S(V) }ses is an open covering of S(V). Since S(V) is compact, we have a finite
subset J C I with {7=1(U;)NS(V)}ics being an open sub-covering of S(V), hence {U; }ics
is an open sub-covering of P(V).

However, this just the proof of continuous map maps a compact set to a compact

set. O
3. Projective chart.

Definition. Let H be a hyperplane in V| let
Ug={LeP(V): L& H=V}.

71 (Uy) =V \ H is open, hence Uy is open.

Ui = {[21, van] : 2 £ 0}, & ¢ [w1, - 2] (f f) e R™ 1,
Transition map of U; — Us maps (vy,- -+ ,vp—1) tO (%, %, e ,v’;j;l).



Exercise 3.1. Prove that U; — K"~ ! is a homeomorphism.

Given a hyperplane H in V|, H = kerw, let
Ugp={L:wlp #0}={L: Lo H=V}.

We fix D € Uy, and define ¢ : Uy — H as follows. For any L € Uy, let uj, be such
that w(Ur) = 1, then we define @y p(L) = ur, — up.
Now we calculate ¥ = &y, p, o CIDIZ% Do

ug + v

—l=uy+v— —
’ O iuo +b)

—Uuj.
We have an one-one correspondence ¢:
P(V) — {sym projector of tr1}.

Now we want to understand 77, ¢. If ¢ is an injective immersion, and since P(V') is compact,
we say @ is an embedding.

We choose a hyperplane H and the unit normal vector ug, then we consider these as
a chart.

—1
o2 P(V) % {sym projector of tr1}.
w = L'~ py.

The first formula is

o~ (w) = w + up,

and the second formula is, by Pythagoras theorem,

Pri(a)

where v is a vector in L’. Then we have the formula for ¢ = ¢ o &1,

<(l, ] +1U>
(ug + w, up + w)

P(w)(a) = (uo + w).

Set w = th, for h € H, we can prove that
Dyp(h)(a) = (a, h)ug + {(a,ug)h.

Then we have
Dotp(h)(ug) = h # 0,

for h # 0, which shows that Dyt is an injection, hence 1 is an immersion at 0. Hence ¢

is an immersion at L', with the arbitrariness of L, ¢ is an immersion.

10



3.2 Grassmannian manifold
Definition 3.2. Grassmannian manifold

Gri(V)={P C V : P vector space with dim P = k}.

3.2.1 Affine viewpoint

We fix @ as an n—k dimension subspace, and set Ug = {P : P®Q = V}. We fix P’ € Wy
and for any P € Ug, we can find a linear function f : P — @ such that the graph of f is
P’ ie. by setting F(z) =z + f(x), x € P, we have Im F' = P’.

Remark 3.1. If we want a canonical function f, we can choose P’ as the perpendicular

direct complement of Q.

We can prove that F' is a bijection. First F' is linear, hence it suffices to show that F’
is injective. If there exists x € P s.t. F(x) =0¢€ P/ C V, it., x + f(x) = 0. We have
f(z) = —x € P, hence in PN Q = {0}, i.e. z =0.

We can show that {F linear : F~!: P’ — P, rank F = k} is one-to-one with Ug.

We define Gp = fp oFIZ1 : P — @, choose a basis {e1, -+, e} of P’ and we say that
(Gp(e1), -+ ,Gp(ex)) gives the coordinate of the P w.r.t. Fp.

3.2.2 Matrix viewpoint

We fix a metric on V, p is projector if p?> = p, then V = ker p® Im p and dim(Im p) = tr p,
(Imp)t = kerp. We say p is symmetric if (p(x),y) = (z,p(y)), of course a projector is

symmetric.
Gry(V) <— G}, = {symmetric endomorphism (i)p? = p, (ii)trp = k.}.

We first prove that this is a one-one correspondence. The only thing we need to show
is that the map is an injection. For p and p’ having the same ker with p,p’ € G}, then
there is an invertible matrix @ such that p’ = Q~'pQ and ker p is invariant under Q.

Then for 2 € kerp, then Qx € kerp, hence p'z = Q@ 'pQz = 0, which shows that
x € kerp’. For x € Imp, we have Qz € Imp, hence p'z = Q 'pQr = Q~'Qz = x. Thus
' =p

Let W be the space of symmetric endomorphism of V', then dim W is @, define
Gr = {p:p? = p,trp = k}. G}, is defined by equation W 2, W xR, fs (f2—f,trf—k),
G, = 271(0).

Question: understand rank ® closed to pg = I.

We have the basis of W as E;; = %(&j + i), 1 <i < j < n. Consider the direction

derivative respect to E;; at pg = Ij:

oo <lim (I +tEij)2 — (I + tEZ‘j) — I]% + I

. tr(Ik —I—tEij) —tr
1
OB, im

t t
= (IkEij + Eijfk — Eij,tr Eij) .

11



Thus there are five cases for 4, j:
(1) 1 <i < j <k, in which situation, aag; = (Ei;,0).
(2) 1 <i=j <k, in which situation, 66;;]_ = (Eij,1) = (Ey, 1).
(3) 1 <i <k < j < n, in which situation, 5‘1:1; = (0,0).
(4

) k <i < j <n, in which situation, aaTq; = (—E;,0).
(5) k < i =j < mn, in which situation, % = (=Ei;,1) = (—E4,1). Only the third
case doesn’t contribute to the rank Dy, ®. Thus rank(Dj, ®) = w — k(n — k), hence

dim Ker(®) = k(n — k).

12



4 Partition of unity

Definition 4.1. Let X be a topological space, f continuous on X

Supp(f) :=A{x: f(z) # 0} = N F.

f=0 on X\F,F closed

Example 4.1. There is a function f: R — R smooth and
(i) Supp(f) €] — 1,1],
(i) f =1 on a neighborhood of 0,
(iii) f is even,
(iv) 0< f < 1.

Lemma 4.1. Let X be a manifold, K a compact set, U open set, then there exists an
open set V. C U with K CV C U and there is a function ¢ smooth on X s.t.

(i) Supp(p) C U,

(ii) p=1onV,

(i) 0 < o < 1.
Proof. First case K = {x}. We can find a chart (O, ¢) such that O C U and ¢(O) D

B(0,1) and ¢(z) = 0. We define X, on X by

0, if y ¢ O;

E(llew)?), ifyeo.
We prove that X, is smooth: X,|o is smooth by definition; if y ¢ O, we know that IV

around y such that V N ~1(B(0,1)) = @, then X, =0 on V.
By conclusion X, =1 on V(z) (on a neighborhood of x) with Supp(X,) C O C U.
Let K be a compact set, K C U. For any = € K, we choose V, € V(z) and X, such
that Supp(X,) C V, C U, X, =1 on W, € V(x). Now {W,},cx is an open covering of
K, hence we have a finite covering W, ,--- , Wy, .

Define ¢g = > X, then

Supp(¢g) C V := U Vi, CU.
i=1

Moreover, 19 > 1 on |J Wy, D K.
i=1
Now we need to cut off ¢y, define ¢p = f o 1)y, where f : [0,00[— [0, 1] smooth such

that

13



Definition 4.2. Let X be a topology space, let {Wy}aca be a covering of X. A partition
of unity is a collection of function {X4}aca such that

(1) Supp(Xa) C Wy, Xo(X) C [0,1].

(ii) Given x in X, only finitely many o are such that X, (x) # 0.

(iii) 3 X, = 1.

acA
Definition 4.3. A covering {U;}icr is locally finite, iff forallx € X, 3V € V(x) such
that {i : U; NV # @} is finite.

Definition 4.4. Let {U;}icr be a covering, a covering {W;};cy is a subcovering if for any

Jj € J, there is i € I such that W; C U;.

Proposition 4.1. Let X be a topological space such that X is locally compact and o-

compact, then for any {U;} covering, there is a locally finite subcovering.

Theorem 4.1 (Partition of unity). Let X be a manifold and {Wy}aca be a locally finite

covering, then there is a partition of unity for W,.

Theorem 4.2 (Whitney). Let M be a manifold (compact), then there exists N and an
embedding of M into RV .

Proof. Let (U, ¢i)i=1,.. p be a finite atlas for M. Assume dim M = n, here we will set
N =pn+p.

We extend ¢; : U; — R™, 0 outside U;. Now this is not continuous.

Let V; C V; C U; be open sets with UV; = M. For example, set K; = M \ |J U; and
V; a neighborhood of K;. 7

Let & be a smooth function with Supp&; C U; and & = 1 on V;. Define

b = ({1801,"' ;gp‘Pp?éla"' 7517)

a smooth function.
Let prove ® is injective, assume that ®(z) = ®(y). There exists ig such that &, (z) # 0
(because = € Vj,, hence &;,(y) # 0, hence y € U;,. Therefore

gio (x)(Pio (x) - §i0 (y)SOio (y)a

hence i, (7) = @iy (1), hence = = y.
Let’s prove that ® is an immersion. Let x € X, there is i, x € Vj,, then (D|Vi0 =

(+++ @iy, -+ ) is an immersion. O

Remark 4.1.

Whitney: every compact manifold of dimension n can be embedded in R*" 1, immersed
in R?".

Source: Milnor, Topology from the differential viewpoint.

Cohen: immersed in R~ where a(n) = #{1 in the binary system decomposition of n}:
4 =100...
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5 Cotangent space

Definition 5.1. Differential of a function.

Let f : M — R smooth function at x. We say “d.f = 07 if the following equivalent
statement are true

(i) AU, X) at x such that dx ) (f o X~ 1) =0.

(ii) V(V,Y) at z, dy () (fo Y1) =0.

Proof.
foYl=(foX Ho(XoY.

dy () f oY ' = (dx(y)(f o X)) o Dy (.

Proposition 5.1. If f = g on a neighborhood of x, then d,(f — g) = 0.

k

Exercise 5.1. f : U CR" - R, d,f =0 < f= f(z)+ Y & - f? where fi(z) =
i=1

0,62' = =+1.

Proof. This reminds me the famous Morse Lemma: If = is a non-degenerate critical point
for f, then there is a local coordinate system (y!,---,y") in a neighborhood U of = with

y'(x) = 0 such that

where X is the index of f at x.
However, here x is a critical point of f but not necessarily non-degenerate. Thus we
may need to make some minor modification of the proof of Morse lemma.

Without loss of generality, we set = 0 and f(z) = 0. Here we introduce a lemma:

Lemma 5.1. Let f be a smooth function in a convexr neighborhood V of 0 in R™, with
f(0)=0. Then

n
f(xla"' ,.’En) — legl(l‘lv a‘/En)?
i=1

for some suitable smooth function g; defined in V, with g;(0) = agg(c?)_

Proof.
Vdf(tey, - tay) - Loy
f(l'l’..- 7$n) _/0 7 dt = izgl.%'z/o axzdt

With this lemma, we could find g; with ¢;(0) = BaT{i = 0. Applying again this lemma

to the g;, then we have h;; s.t.

n
gilwe, -+ mn) = Y wjhij(ay, - z).
=1

15



Hence it follows that

T + xjh;; ? x; — Tjhij 2
f(.’El’-.- ,xn):szxth](ajl’ ’xn)zz # _ f ‘
1’7]

i?j

O
k
Exercise 5.2. f:UCR" >R, d,f=0 < f=f(x)+ > e fi-gi, where fi(x) =0,
i=1
gi(x) =0,e; = £1.
Proof. aaa O
Let U be a neighborhood of x, let
&U) ={f: smooth on U}.
F(U) ={f: smooth on U and “d,f =0"}.
Let’s consider the vector space &(U)/.% (U).
Proposition 5.2. &(U)/.#(U) does not depend on U.
Let V C U and &(U) — &(V) is the restriction. We claim that
Proposition 5.3. & : &U)/F(U) — &(V)/.Z (V) is an isomorphism as a vector space.

Proof.

(i) This is a linear map.

(ii) @ is injective.

(iii) Let f be a function on V, let h be a smooth function defined on M with h = 1
on a neighborhood of z and Supph C V. We define f = hf on V, f = 0 outside V. Then
f = f on a neighborhood of z, then “d(f — f) = 0", f = f in &V)/.Z(V). Now f is the

restriction of a function defined on U, thus ®(f) = f, which shows that ® is surjective. [
Definition 5.2. Cotangent space Ty M = &(U)/% (U).

Definition 5.3. Given f defined on U € V(z), dyf € TiM is the projection of f in
&)/ Z(U).

Remark 5.1. Check that “dyf =07 & d, f = 0.

Proposition 5.4.
(i) dy : f — dif is a linear map.
(27’) d:r:(fg) = f(x)dxg + da:fg(x)

Proof. Set h = fg— f(x)g — g(z)f, we just want to prove that d,h = 0.
Let us find a chart (U, X), f= foX 1, g=goX 1and h = ho X~ 1. Let zg = X (),
then

then by the Leibnitz rule, dy,h = 0. O

16



Proposition 5.5. If (U, X) is a chart at x, X = (x1,- -+ ,xn), then (dgx1,--+ ,dzxy) is a
basis of Ty M.
Moreover, if f = F(x1,--- ,xy,), then

dof = ngidxxi.

Proof. Setting yo = X (x), \; = g—i, let us consider

f=> Nz =h,

Claim 1, d.h = 0.
Let h=hoX !, f=foX '=Fand & = 0X. Then
~ OF
h=F— — ~ia
&rix
by differential calculus dg,h = 0.
Then d, f = > Aidyx;, hence f € Span(dyz1, - - - dyxy)
Claim 2, d,xj, are independent.

Assume that Z)\ldxl‘l = 0, iff da:(z )\de:c,) == 0, iff dx(z )\de.fl = 0, iff )\1 = 0 for
any 4. ' ' ' ]

Definition 5.4. Partial derivatives.

If f is smooth around x, (U, X) is a chart,
da: = 7dx I3

we just says % = gg.

Exercise 5.3. d,\ =0 if A is constant on V(x).

Definition 5.5. Tangent space.

T, M is the dual of Ty M, elements of T, M are called tangent vectors.

If (X,21,- ,x,), we have a basis (6%17 e ,%) of T,M given as the dual basis of
(dpw1, -+, dpy).

Remark 5.2. Note that B%i does not only depend on x;, but also on the whole choice of

basis.

Example 5.1. Let ¢ be smooth curve at x in M,
c:]—-11[—= M, ¢0)==x.
the tangent vector to ¢ at x is defined by
(w]¢(0)) = w(¢(0))

for any w in Ty M and for any f such that dy f = w.

17



Exercise 5.4. If dyf = d,g, then %‘t:(](f oc) = it’t:o(g oc).

Proposition 5.6. Let X = (z1,--- ,xy) be coordinates at x, let X oc = (¢1,- -+ ,¢y), then

¢(0) = Zc‘i(o);m.

(2

Definition 5.6. Let vy, v1 be two curves through x, we define o and vy1 are tangent at x
iff 70(0) = ~1(0).

Proposition 5.7. Let ¢ : M — N be smooth, if vo and 1 are tangent at x, then ¢ o~y
and ¢ o~y are tangent at ¢(x).

Proof. Let X be coordinates around =,

70(0) =71(0) <= (X 070)(0) = (X 07)(0).

Let Y be coordinates around y = ¢(x), we need to show

(6 070)(0) = (¢ 071)(0),

which is equivalent to

(Y o o)(0) = (Y opor)(0),
— (YogpoX1ToXor)0)=(YopoX1oXonq)0).
We write ¢ for Y opo X! and ¢; = X o ;.
There (¢ 0 ¢;)(0) = Dx (¥ (¢;(0)), but since vo(0) = 71(0), then ¢o(0) = ¢1 (0, then
Dx(2)¥ (c0(0)) = Dx(2)¥ (1(0)) .
O

Definition 5.7. Let ¢ be smooth from M to N. Then T,¢ is the unique linear map
T M — TyyN such that T,¢ (¢(0)) = (¢ 0 ¢)(0).

Sometimes Ty is written as Dy¢.

Proposition 5.8.
(i) dy(f o ¢) = dg) f o Tub.
(”) T:Jc(¢ © ¢) = Tq&(a:)(b o Ty

(tit) If (z1,- - ,zp) are coordinates at x, (y1,- - ,Yn) are coordinates at ¢(x), then the
matriz of T, ¢, in %, % is of a coefficients %, where Y o ¢ = (p1,- -+, dp).
7 5 i
Theorem 5.1.

(i) ¢ is a diffeomorphism on V(x) iff Tp¢ is invertible (just by local immersion theo-
rem).
(it) ¢ is an immersion iff T,¢ is injective.

(7ii)¢ is an submersion iff Ty is surjective.
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6 Differential forms

6.1 1-form.
Let T*M = || THM.
zeM
Definition 6.1. A differential form of degree 1 is w : M — T*M such that w(m) €
T* M.

Example 6.1.
(i) If f is function, df (m) = dp, f is a differential form. Such a form is called exact.
(ii) The space of differential 1-forms is a vector space.
(7ii) If o is a 1-form, f a function on M, then foa:m — f(m) - ay, is a 1-form.
(v) If (x1,--- ,x,) are coordinates in M on V(z), then

n
w= E widx;,
i=1

on a neighborhood of x, where w; are functions.

Definition 6.2. w is a smooth 1-form if in every x in M we can find (x1,--- ,2,) on a

n
neighborhood of x, such that w = Y w;dx; with w; smooth functions.
i=1

Remark 6.1.
(i)If f is smooth, then

df = Z g«i da;,

with 372 are smooth, hence df is a smooth 1-form.

(it) If w = > widx; with w; smooth, then for any coordinates (y1,- -+ ,yn), we have
i

w=Y_ midy;,
5

Ox;
dy;

with n; smooth. Since n; = w;
J

Proposition 6.1. The space Q' (M) of smooth differential forms on M is a vector space,

and it is also a modules over C*°(M).

Integration of 1-forms

Let w € QY (M), let ¢ be a curve [a,b] — M, we define

b
/w::/wct
C a

If ¢ is an increasing diffeomorphism [a,b] — [a, b], then

Je= e
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If ¢ is decreasing, fco¢w = — fcw.
When is a form exact? (at least locally).

O Bws
w = > w;idzr; and w = df, then g‘;; = 8::

We will introduce Q2(M) forms of degree 2.

d: QY (M) = Q*(M),

such that dod(f) = 0.

6.2 Review of linear algebra

Let E be a vector space of finite dimension m, an exterior form of degree p is «, such
that o : EP — K,

(i) « is multilinear.

(ii) gy, s Ue(p)) = (—1)FDa(uy, - ,up),0 € &)
Antisymmetric 2-forms, a(u,v) = —a(v, u).

It is enough to check (ii) when o is a transposition.

Facts: we denote by AP(E*) = {the space of exterior p forms}, AP’(E*) is a vector
space. \*(E*) = @,2, A\"(E*). By convention AY(E*) = R.

Remark 6.2. Map E — F is a subset of E X F', @ — F, subset of @ x F'. Note that the
empty set have the subset, itself!

If (e1,- -+ ,em) is a basis of E, and (e!, -+ ,e™) the dual basis of E*. If I = (iy,,ip)
with 41 < --- < ¢, then wr defined by

wr(ei, - ,eq,) =1,

wr(ejy,- -+ ,ej,) = 0,otherwise.

defines a basis of AP(E*).
dim AP(E*) = 0 if p > m, dim AP(E*) = dim A" P(E*).

Exterior product

Facts: there is bilinear form AP(E*) x AY(E*) — APTY(E*), o, B — o A 8, which enjoys
the following properties

(i) associativity, (¢ A B) Ay =a A (BA7).

(ii) a A B = (—1)desxdesSg A .

(iii) normalisation wr = e;; A---Ae;,.

Formula:

a A /B(U17 T 7Up+q) = Z (_1)€(U)a(u0(1)7 T 7u0'(p))ﬁ(ucr(p+l)7 T 7U(p + Q))7

0€6p1q

for p=q =1, (@A B)(u,v) = a(u)B(v) — av)B(u).
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Interior product
Bilinear form E x A\P(E*) — AP"HE*), u,w — iyw,
Z.U,(")(Ul? e 7/Up*1) = OJ(U,’Ul, e avpfl)~

Exercise 6.1.
in(a A B) =iy A B+ (—1)38% A, B.

Proof. We can prove this just for orthonormal basis. O

Induction
A: E — F linear, A* : NP(F*) = N\P(E*),
(A%w)(u, - ,up) == w(Ay,, - ,Aup).
Proposition 6.2.
(i) A*(a A B) = (A"a) A (A"B).
(ii) A* o B* = (Bo A)*.
(ZZZ) A*(ZA(U)OJ) = ZU(A*Oc)

6.3 Differential forms on manifolds

m
Motivation: if (X,U) is a chart, w is a 1-form on U, w = ) w;dz;.
i=1

ow;  Ow;
X . J _ v . .
d*w = g (8332‘ &Tj) dz; N\ dx;,

1<j

a 2-form on U. If w = df, then d*w = 0.
If (X,U), (Y,V) are two charts, then

dXw=d"w, on UNYV,

so we can well-define dw.

Converse is almost true: if dw = 0, then there is f such that w = df (depends on the
shape of manifold).

N (M) = JAP(T5 M), a differential form w : M — AP(M) such that for all m € M,
wm € NPT M),

How to define smooth differential forms?

Observe that if (U, X) is a chart

dmT1 = dpxiy A dmai,, where I = (iy,--- ,ip) with ip <--- <,
is a basis of AP(T;5 M). Every form satisfies
w = Z widzy,
I
on the chart.
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Definition 6.3. w is smooth on M iff for every x € M, there is a chart (U, X) at x such

that V1, wf( is smooth.
Exercise 6.2. If w is smooth, then for every chart (V, X), wf( is smooth.

Then we define a A § by
(A B)m = am A Bm, meE M.
(a+ B)m = am + Bm- kENa:=ka, for k € R and a € A\P(E*).

Proposition 6.3. If a and 8 is smooth, then a A\ B is smooth.

Convention: A\°(M) = | (/\O(TmM*)) = | | (R), hence a 0-form is a function.

m m
Notation:

OP(M) = {vector space of C*°p-form on M }.

hence Q°(M) = C*(M), and the wedge product

QP(M) x QI(M) — QPH(M).

Exterior differential

Definition 6.4. A linear map QF (M) 4, qpt (M), Vp, is an exterior differential if
(i) if a =0 on V(z), then dao =0 on V(x).
(i) d(fda) = df A da.
(7ii) df is the usual differential of a function.

Theorem 6.1. On every manifold, there exist a unique exterior differential.

Proof.

Uniqueness part:
Proposition 6.4. If d is an exterior differential, then
d(fdgy A--- Ndgy) = df Ndgi A--- A dgp,

where f,g1,- -+, gp are functions.

Let us prove the proposition by induction on p. For p = 1, it is just definition (ii).

Assume this is true for p — 1, then
dgi N -+ Ndgp = d(gidga A -+ N dgp).

Then
d(fdgi \--- Ndgy) = d(fd(gidga A --- Ndgp)) = df Adgi A--- A dgp.

Proof is complete.

Corollary 6.1. Uniqueness of an exterior differential.
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If =3 frdw;y N--- Ndx;,, then da = ) df; Adwi A--- Adx;,, which indicates do is
T T
uniquely determined.

Existence part:
dim M
Let (U, X) be a chart. Let us define dX on Q*(U) = @ QP(U) b

Zwldaj[ Zdwl/\dx[

We now prove that dX is an exterior differential. (i) and (iii) are obvious. For (ii), we
need to prove dX (fdw) = df A dXw.
Let w =) wrdzy,
T

d¥(fd¥w) =" d* (fdwy A day)
I
= ZZdX (fawldmj /\dmj)
I j
o
—;;d(fa(;j)/\dxj/\dxf
_Zzawldf/\dx]/\dforZZZf O dxz/\dx]/\dxj

:de/\deAd:zIJrO
I

= df A d¥w.

Assume that (U, X) and (V,Y) are charts then if f is defined on UNV, then d* (f|ynv) =
4" (fluaw).

The existence follows, let w be a p-form, we define dw in the following way. Let (U, X)
be a chart around V (z),
dw|y = d¥ (wlv),

this way we have defined coherently dw. O
Proposition 6.5. d’a = 0.

Proof. Let f =1, then
d*a = d(fda) = df A da = 0.

O

Assume smooth map F': M — N, in particular, T, ' : T, M — Tp(,,) N, we define
F*: Q(N) = Q(M):

Frw(uy, - ,up) i=w (TF(u1), -, TF(up)),

where (F*w)m = (Tin ") wp@m) and u1, - -+ ,upy € Ty M.
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Remark 6.3. (T,,F)* is a pull-back between two tangent spaces. The * is different from
the * on F*.

Proposition 6.6.

(i) d(do) = 0,

(i) F*(a A B) = F*a N F* 3,

(iii) d(F*a) = F*da,

(iv) d(a A B) = da A B+ (—1)48%a A df.
Proof. We prove (iii). Note that this formula is linear in «, it is enough to prove it for
a = fidfs A -+ N dfy, where f1,---, fi are functions on N. Indeed, locally every « is a
linear combination of forms of this type.

For f a function,

(F*(df), (W) = df ey (T F(w)) = (dpm)f 0 TnF) (u) = (d(f © F)),, (w),

which indicates F*df = d(F*f).
Generally, for o = fidfao A -+ - A dfy,

Fro = F* (fidfy A -+ A dfy,)
= (F*f1)(F*dfz) A -+ N\ (F*dfy,).

The second equality is induced from (ii). Hence
dF*o = d(F* f1) A (F*dfa) N -+ A (F*dfy) = F*(da).

Now let us prove (iv). Again by linearity it is enough to prove it for a = fidfao A- - - Adfy,
B=gidga A+ Ndgm.

alB= figrdfa N N fe Ndga A=+ N dgm.

dla A B) =d(figi)dfo A -+ Adgm
= (q1dfr + frdgr) df2 A -+ A dgm
=qdfi A---Ndfy Ndga N\ --- ANdgm + frdgr ANdfa A ANdfy Adga A - A dg,
= gi(dfi A== Adfi) Adga Ao Ndgm + (1) fidfa A Adfi A (dgr Adga A A dgp)
=da A B+ (—1)¥8% A dp.
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7 De Rham Cohomology

Given M a manifold, TM = | |T,,, M.
m

7.1 Poincaré lemma

N I
A smooth vector filed is, locally in a chart, £ = &%, where {%} is the dual of {dz;}.
i=1 ! !

We denote by x>°(M) the smooth vector fields on M.
An interior product or a vector field with a form
X (M) x QM (M) — Q¥ (M)

(& w) = igw,
where (igw)m = ig,,Wm.

Example 7.1. Let N = M x R. On M x R there is a natural vector O,

d

O(m, s) = il

c(t),

where c(t) = (m,t).
What is the ig,a? « is a form on N, locally we can find a chart (U, X) on M, and
hence (U x R, (X,t)) on N, where t: (m,s) — s. InU xR,

a:ijda:[+th (ZngxJ> .
1 J

In general we can write o = ag + dt N ap. We will prove ig,000 = 0 and ig,o0 = 1.
d d
dt(8;) = 7‘ t(m,s) = 7‘ —1
( t) dt lt=s (m S) dt t:ss

d d
dxzi(0) = ﬁltzsxi(m,s) = %‘tzsxi(m) =0.

igyouug, -+ s up) = (O ug, -+ ug)
= ag(Op, uz, -+ yug) + (dt A aq) (O, ug, -+, ug)
=0+ iy, (dt N aq)
= (ig,dt) N ai(ug, - ,ug) + (=1)dt Nig,on(ug,- -, ug)
= a(ug, - ,ug).

Remark 7.1. (e;, A---Aej,)(elt, - er) = det{e;, it} ;.

Hence if I and J are of increasing order, it is 1 only if I = J, otherwise it is 0.

Definition 7.1. We say « is closed if dao = 0 and « is exact if there exists 8 such that
a = dg.

We say o and 8 are cohomologuous if o — 3 is exact, for a and S closed.
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Definition 7.2. Let Fy : M — N and Fy : M — N be two smooth maps. We say
Fy is homotopic to F| if there exists F : M x [0,1] — N such that F is smooth,
F(m,0) = Fo(m) and F(m,1) = Fi(m).

Remark 7.2. Working definition G : M x [0,1] — N is smooth if there exists a smooth
map Go : M x R — N such that Golprxo,1 = G-

Definition 7.3. We say a manifold M is contractible, if the identity M — M is homo-
topic to a constant map K,, : M — {my} C M.

Example 7.2. An open ball B in R", F(z,t) =tz for x € B,t € [0,1].
Proposition 7.1. Every compact manifold is not contractible.

Proof. We will prove it later, or not.
My thought: For orientable compact manifold, the top Betti number is 1. For non-

orientable case, we can choose the orientable double cover. ]
Theorem 7.1 (Poincaré Lemma). If M is contractible, then every closed form is exact.

Theorem 7.2 (Homotopy Lemma). If o € Q¥(N) is closed on N. If Fy and Fy are

homotopic maps M — N, then Fja and Ffa are cohomologuous.

Proof. We use the Homotopy Lemma to prove the Poincaré Lemma.
Set Fy =id and F} is a constant map. Since M is contractible, F is homotopic to F}.
Fyoa = a and Ff'a = 0. Hence a is cohomologuous to 0, which means « is exact.
Now we prove the Homotopy Lemma. On M x [0, 1], if « is a k-form, o = ap + dt A g,
where a1 = i, and ag = oo — dt A 1,00
Js: M — M x [0,1] such that Js(m) = (m,s). Hence 0¢(m,s) = % Ju(m).

Lemma 7.1 (Special case of Lie-Cartan formula).

d
—|  (Jpo) = J (ig,da) + Jid(ig,x),

du lu=s
where o € QF(M x [0,1]) and

k
Tra(m) :u € [0,1] = (Jia)m € \(TmM).
d

d * Pyp—
<du u—SJUOé>m T d’LL

Proof of Lemma. a) This is a local formula, hence we can prove it on U x [0, 1] where U

[(Jae)e]-

uU=s

is the domain of a chart.
b) This is a linear formula.

Then it is enough to prove for

ap = f(z,t)dt Ndxy A -+ Ndzg_1,
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ap = f(z,t)dxy N -+ - Adxg,

where (z1,--- ,x,) are the coordinates in U.

First we consider a. 79,01 = 0 and

of —~ Of
da:atdt/\dagl/\.../\dwq—k;axi dz; Ndxy A -+ N dxg.

Thus, ig,da = 88—{ dxi A - Ndxy,. Ji(igda) = %—{ (m,s)dxz1 A -+ Adzg.

Jpoq = f(m,u)Jydxy A - A Jydeg = f(m,u)dzy A -+ A dxg.

Then %‘uzsﬁjal = % (m,s)dxy A --- A dzxg. Now the formula is proved for o = a.

For o = o, 9,000 = fdx1 N -+ Ndwg_1, then

0 "9
d(ig,cn) = a—{ dt Adxy A~ Adrg—1 + E 87]0 dri Adxy A~ Adzg-1.
i=1 " °

) Ly
ig,dog = ip, (af dt/\dmdxlA'--/\dxq_ﬁZ—aj dxi/\dt/\dxl/\-n/\dxq_l)
i=1 v
"9
=19, (Zajdxi/\dt/\dml/\-~/\d:nq1>
i—1 7

1=

Z—Z of dmi/\dml/\~~-/\dacq_1
=1

— 8.%
Then
. . of
d(ig,cn) + ip,dag = g dt Ndzy N - Ndxg—1.
. . of
J; (d(ig,c0) + ig,dog) = 5 (m, s)dz1 A -+ A dzg—1-0,

since Jidt = d(to J,) = 0.

Jrog = 0. Thus the formula is also prove for the case a = a;. O

Set 3 a closed form on N and F : M x [0,1] — N is the homotopy map of Fy and F}.
Set a = F*f3.
Jia=J{F*B=(FolJi)"8 =Fp.
Fa= JiF"8 = (F o Jo)"8 = FgB.
Then it suffices to show J{a — Jja is exact.
Note that da = dF*5 = F*d = 0, and

1
* * d
Jla_Joa—A <du

1
- / (2 (igyda) + Trd(ip,a)) ds
0

Js*a) ds

U=s

1
- / (J*d(in,a)) ds
1
—d / (T2 (ig,)) ds
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is exact. 0
Remark 7.3. From d(a+ ) = da+ dj, we have d [ = [ d.

Remark 7.4. Lie-Cartan formula.

ngdoig—i-igod.

7.2 Cohomology group

A family of vector spaces associated to manifold

Definition 7.4. Given k € N > 0, we define the k' de Rham cohomology space
H*(M) = {w e Q¥(M) : dw = 0} /{w : 3o s.t. dov = w}.
We denote
QF (M) = {closed forms of degree k},
QF (M) = {exact forms of degree k}.
Then QF(M) c Q¥(M) and H¥(M) = Q.(M)/Qe(M).
Theorem 7.3 (De Rham). If M is compact, then dim(H*(M)) < oc.

Remark 7.5. By M-V argument, we can prove the finiteness for a manifold with finite
good cover, see the book by Bott and Tu.

Definition 7.5. The k' Betti number of M is
b8 (M) := dim(H*(M)).

, 1, ifi=n,0
Goal of this section is to show that b*(S™) = .
0, otherwise

Note that b¥(M) = 0 is equivalent to every closed k-form is exact.
For w € QF(M), if w is closed, then it is in QF, and we use [w] to denote the cohomology

class in H*(M) respect to w.

Proposition 7.2. Show that if smooth F : M — N and [a] = [B] for a, 8 € QF(N), then
[F*a] = [F*0].

Proof. By definition, there is w € Q¥~1(N) such that o =  + dw, then

F*a = F* (8 + dw)
= F*B+ F*dw
= F* B8+ dF*w,

hence [F*a] = [F*f]. O
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Proposition 7.3. If FF': M — N and G : M — N are homotopic. For any closed form
a € QF(N), we have [F*a] = [G*a).

Proof. This is just the Homotopy Lemma 7.2. 0
Definition 7.6. If F': M — N, we define
F*: H*(N) — H*(M),
w— Ff'w = [F*al, if [o] = w.
It is well-defined due to Proposition 7.2.

Theorem 7.4 (Homotopy Lemma). If F' and G are homotopic M — N, then F* = G* :
HE(N) — HM(M).

Definition 7.7. We say F': M — N is a homotopy equivalence, if there is G: N — M
such that o G ~idy and G o F ~ idy,.

Proposition 7.4. If F is a homotopy equivalence between M and N, then b* (M) = b¥(N).

Proof. If F'o G ~ id, by homotopy lemma id = (id)* = (F o G)* = G* o F*. Similarly, we
have F* o G* = id. Hence F* is a bijection between H¥(N) and H*(M), with the inverse

G*, which indicates

Proposition 7.5. Show that M x R is homotopy equivalent to M.
Proof. We will construct ' : M x R — M which is a homotopy equivalence. Define

F:MxR— M,

(m,t) — m.

G:M — M xR,
m +— (m,0).

Then
FoG=id, and Go F : (m,t) — (m,0).

We can have
H:MxRx[0,1] - M xR,
((m,t),s) = (m, st).

Note that H is smooth, H((m,t),0) = (m,0) = G o F(m,t) and H((m,t),1) = (m,t) =

idMXR- Hence Go F ~ idMX]R- O
Corollary 7.1. b*(M x R) = b¥(M).

Corollary 7.2. b*(R?\{0}) = v*(S!).
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7.3 Cohomology of Spheres

Remark 7.6. Set M is a manifold with diim M = m. Then Q1 (M) = 0 and hence
HMY(M) =0 for k> m.

HY(M) = {w € Q¥M)}/{exact forms} = {f : df = 0}/{0}, i.e., H'(M) is the set
of locally constant functions, hence b°(M) is the number of connected components of M.

Thus b%(M) = 1 if M is connected.

Exercise 7.1 (Mayer Vietoris). v = (1,0,---,0) € S" and v = (-=1,0,---,0) € S™.
Define two open sets U = S"\{u} and V = S"\{v}. Show that

(1) U and V' are contractible.

(ii) U NV is homotopic equivalent to S"~!

Proof.
(i) Define K, : U — {v} by K,(x) = v. We define

H:Ux[0,1] =",
(1 —-t)v+tx

A T e

In fact, H(z,1) = = id(z) and H(z,0) = v = K,(x). Obvious H is smooth, we only
have to verify that H is well-defined, that is, |[(1 — t)v + tz|| # 0.

For x # v, since © # u = —v, x and v are independent, if (1 — t)v + tx = 0, we have
(1 —t) =t =0, which is impossible. For x = v, ||(1 — t)v + tz| = |jv]| = 1.

(ii) We treat S"! as a submanifold of S" and the inclusion map is

iS58 i(wy, e, an) = (0,21, @)
Now we define ( )
.Qn n—1 T, T
T.S —>S s T‘(xo,xl,“-,xn)—m.
Then
. X1 T,
1or(x e — 0 e
(07 ) n) (73:%_’__’_1%7 7$%++$%>
roi(xy, - &) = (1, -+ ,xy) = idgn-1(z1, -, 2p).

Thus we only need to show that i o r ~ idgn.
H:UNV = S" by H((xg, 21, ,p),t) = rom0lndn)  They

 [l(tzo,z1,wn)]]

(Oamla"' ,l’n) < T Tn > .
H Zo, L1, ", 70 = = O,—,'-‘, = jor(x,
H(($07$17"' 7xn)a1) = (.CU(],"' axn) = idS”(an"' axn)-
]
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Lemma 7.2. There is a unique (linear) map

J:H¥SY) — H-YUnV),
W] = o= 4],

where o € QFY(U) with do = w|y and g € QF1(V) with df = wly ..

Proof. First we explain the existence of a and 3. Since w|y € Q¥(U) and dw|y = (dw)|y =
0, and U is contractible, then we have o € Q¥~1(U) such that da = w|y. Ditto for 3.

Then we prove that J is well-defined. First we prove it doesn’t depend on the choice
of a and S, then we prove it doesn’t depend on the choice of the representation of [w].

If a and o are in Q¥"1(U) and da = do/ = w|y, then d(a — o’) = 0. Since U is
contractible, there is a form v € Q¥2(U) such that o = o/ + d. Similarly, if 3 and ' are
in QF~1(V) and d = dB' = w|y, then there is a form 1 € Q*~2(V) such that § = ' + dn.
Now we have

a—pf=ad —p +dy—n),
which indicates [a — 8] = [o/ — '] € HF-Y U NV).

Second, if [w] = [w'] € H*(S™), i.e. there is a form 6 € Q¥~1(S™) such that w = W’ + df.
Taking o/ = o — 0|y and 8’ = 8 — 0|y, then we have

do/ = da — df|y = w|y — df|y = ' |u,
dp' =dp —di|ly = wly —dily = u'|v,

(' = B uav = aluav — Olunv — Bluav + 0luav = aluay — Bluay = (o — B)|uav-

O

Theorem 7.5. J : H¥(S") — H*1(U NV) is bijective when k — 1 > 0 and b*(S") =
VLU NV) =p-i(shh).
For example, b*(S3) = b'(S?).

Idea: we use a function ) on S™ such that

1» = 1 on a neighborhood of wu,
1 = 0 on a neighborhood of v.

If v is a form defined on U = S™\{v}, then

-aon U,
pra=1"

0 on a neighborhood of v.

is a global smooth form on S™.
Likewise, if 8 is a form defined on V, then (1 — %) is defined on S™.
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Proof. First we show that J is injective, that is, if Jjw] = 0, then [w] = 0. Now we have
ac QFLU), B € QFY(V), da = w|y and df = wly.

0=Jw] =a-8l,

indicates that there is a form v € Q¥ 2(U N V) such that a = 3 + dy. Then we will
construct 7 € QF¥~1(S™) such that w = dn.

Note that ~ is defined on U NV, now we will use ¥ to construct forms on U and V.
Yy is well-defined on V' (there is a gap in U) and (1 — %)~ is well-defined on U. Then we
define

a=a—d(1-1v)y,
B =B+ d(y).

Thenon U NV,

a—f=a-pF-dl(l-yY)y+¢y)=a—-F—-dy=0,
which means @ = 8 on U N V. Now we define

a, onU

n=19.
B, onV.

Since & = 8, 7 is well-defined on S”.
Note that on U, we have
w|ly =da =da = d(nly),

and on V' we have
w|V =dB =dp =d(n|v),

that is w = dn, i.e. [w] =0 ¢ H*SM).

It remains to prove that .J is surjective. For any form in H*~1(U N V), we choose
v € QYU NV) to represent it. Now we need to find w € Q¥(S"), a € H*"1(U) and
B € H*=1(V) such that

da =wly, dB=wl|y, [a—pF]=1[]

Since dip = 0 on V(u) and V(v), dip A~y is well-defined on U UV = S". Let show that
J[—dy A ~y] = [y]. Define

a:=(1—-1v)y, da=—dypA~v,onU.

B::a_q/:_w'yv dﬁ:—dw/\"y,OHV
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0, ifn>1,
Proposition 7.6. b!(S") = .
1, ifn=1
Proof. If a is a closed 1-form on S™, then there are functions f and g defined on U and V/
such that df = a|y and dg = a|y. Then d(f —g) =0on UNV.

If n > 1, UNYV is connected, hence f — g is a constant on U NV, denoted by A € R.
Then we define

, on U
h:= f

g+ A, onV.
Then a = dh.
If n =1, note that UNV =01 U O0y. Then f —g= X on O and f — g = Ay on Os.
Now we define
J:HYSY = HOS) =R, [a]— A — o

is a bijection. (This proof is similar to the proof of the last theorem).
First we say that J is well-defined. For [o/] = [a], there is a O-form [ such that
o =« +dl, then we define f' = f +1, and ¢’ = g + [, then

df' = df +dl = aly +dl = |y,

dg' =dg+dl =aly +dl =dly.

And f'— ¢ = f —g. So A\; and Ay keep invariant and hence so does A\; — As.
It’s not difficult to show that .J is injective. If Ay — Ay = 0, then similar to the case for
n > 1, we can construct a global function h such that o = dh.
Now we will prove that J is surjective. For any ¢ € R, we construct a function g such
that ¢ is 0 around u~ and g is ¢ around u™.
We assume O; contains a neighborhood of ™ and Os contains a neighborhood of u™.
Now we define
g+ec, on Oy,
g, on Os.
Then we have f —g=con O1 and f — g =0 on Oy, that is, 73 = ¢ and v = 0. We need
to verify f is well-defined, that is, f is smooth at point u. Since f = g + ¢ = ¢ around
u” and f = g = c round u™, we say f is continuous at point u. Moreover, g is constant

around u~ or u™, then f is smooth at point w. O
Remark 7.7. For calculating H*(S'), we can also define

/:Hl(Sl)—HR, wH | w.

St

We will show that f is a bijection.

If Jqow =0, then
ut
/ w = / w =0.
u S1\{u}
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Since on S'\{u}, there is a function f such that w = df, then

ut

0= [ df = st - ).

Now we define f(u) = f(ut) = f(u™). then we have a global function on S'. But we
need to show f is smooth. However, the smoothness is due to df = w on S'\{u} and the
smoothness of w.

It suffices to prove [ is surjective. For any c € R, w = 5-d0 is just what we need.

4 1, ifi=n,0
Corollary 7.3. b'(S") =

0, otherwise
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8 Orientation and Manifold with boundary

8.1 Orientation

Definition 8.1. On a manifold of dimension n, a volume form is a form w of degree

n, such that w; # 0 for every x in M.

Remark 8.1. Recall \"(E*) = 1, where dim E = n a vector space. Then a basis of
N (E*) is given by e1 A--- A e, where (el,---  e") is a basis of E with dim(\(E*)) = 1.

Example 8.1. w =dx1 A--- Adz, is a volume form on R™.

@ : R" - R™ a smooth map, then

¢"(w) = Jac(p)w,

where Jac(yp) is the function defined on R™ by

Jac(p)(x) = det(Dyzp) = det <g§;)

O (W) (ur, - un) = wga(x)(Dx‘:O(ul)? oy Dyp(un)) = det(Dyp)wy(ur, -+, un).
Definition 8.2. A manifold M is orientable if there exists a volume form on M.
Exercise 8.1. We will prove S" /{—id} = RP" is orientable iff n is odd (“impair”).

Remark 8.2. Assume now that M is connected, then if we choose a volume form wy on
M, then every form of degree n = dim M, then every w in Q™"(M) is of the form w = fwy,
where f € C®(M).

In particular, if w is a volume form, f never vanishes (nowhere 0). Thus if M is

connected, either f >0, nor f < 0.

Definition 8.3. We have the following equivalence relation, two volume form wi and wo

on M, defines the same orientation if and only if
w1 = fws,
with f > 0.
Exercise 8.2. Show that this indeed is an equivalence relation.

Definition 8.4. An orientation on M is the choice of a class in the above equivalence
relation, that is a choice of a volume form, up to multiplication by a positive function.

If M is connected and orientable, M has two orientation, one given by wg and another
by —wp.

M is oriented if it is orientable and an orientation has been chosen.

Definition 8.5. ¢ : M — N is a diffeomorphism, M is oriented by w1, N is oriented by
wi. We say ¢ preserves the orientation if p*wi defines the same orientation as wg.

Ezample: M, N = R"™, ¢ preserves the orientation, iff Jac(yp) > 0.
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Remark 8.3. If ¢ does not preserves the orientation for M, N connected, then p reverses

the orientation, p*wi ~ @q.

Theorem 8.1. M is orientable, iff there exists an atlas (V;, ;) on M that that det (Jac(gpio
w;l)) >0 on U;NU;j.

Proof. We can always assume for simplicity that M is connected.
Assume M is oriented by wy. Let (U;, ¢;) be an atlas on M, where U; is connected.
If ¢; : Uy C M — O; C R™ preserves the orientation. Then we take ¢; = ¢;.
If ¢; : U; € M — 0; C R™ reverses the orientation. Then we take p; = A o ¢;, where
A is a linear map with det A = —1.

Then ¢; preserves the orientation,

o7 (plw)
7 (fio)
Jio 07 (e ) wo)
fio @ g,

(i 0 @; ) w

= (
=
=
= (

where f and g are positive function and w is the volume form dzi A--- Adz, in R™. Hence
det (Jac(p; o cpj_l)) > 0.

Assume that det (Jac(gpi o goj_l)) > 0. Let w; on U; with w; = pfw

On U; NUj, w; = gijwj, where g;; is a function on U; N U;. The hypothesis gives that
gij > 0, indeed,

W = (80?1)*(%@;(00))
= (gi 007 N(wjo 0 ") 'w)
= (g5 0 ;) det (Jac(p; 0 o7 1))
Let 1); be a partition of unity associated to U; (we also assume {U;} is locally finite).
Then Supp(¢;) C U, > 1b; = 1 and ¢; > 0. We take wg = > 1w;. Let us finally prove

(wo)z # 0 for any x € M.

Let ig such that ¢;,(z) > 0. wo(z) = > i(z)w;i(x), where the summation is finite.
:x€U;

wo() = iy (w)wiy (z Z Vi () giio (2)wo ()

i#iowel;
= <¢io (x) + Z ¥i()giio (x)>wi0 (z),
i#i0:x€U;
where ©;(2)gii, () > 0 and ¥, (x) > 0. -

Given an oriented manifold M < we can define [, w, where w € Q*(M), n = dim M.
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8.2 Manifold with boundary

Model:
(i) Half space H" = {(z1,- - ,x,) : 21 < 0}.
(ii)Boundary OH"™ = {(x1, - ,xy,) : 21 = 0}.

Remark 8.4. The boundary of U in topology language is U \ U.

(iii)For U an open set in H", the boundary of U is OU = U N OH".

(iv) A function (or mapping) continuous f : U — R or R™ is smooth if there exists a
smooth g defined on & D U open set of R™ such that g|y = f.

(v) f:U Cc H* - V C H" is a diffeomorphism, if F' is smooth, bijective and the

inverse f~! is smooth.
Proposition 8.1. If f is a diffeomorphism from U C H" to V. C H", then f(OU) = 9V.

Manifold with boundary. M a nice topological space.

Define chart (U, X') where X bijection from U to an open set in H". (U, X) and (V,Y)
are C*° compatible if X o Y~™! and Y o X! are smooth.

Alas on M gives the definition of manifold with boundary. = € M belongs to the
boundary of M, if there exists a chart (U, ), z € U, p(z) € d(¢(U)). (The definition is

not depend on the choice of the chart, due to the last proposition.)

Proposition 8.2. If ¢ is a diffeomorphism from M to N, then p(OM) = ON.
OM is a submanifold of M, dim OM = dim M — 1.

Exercise 8.3. M \ OM is a usual manifold.

The question is how to define the vector space of a boundary point m € M.
T H™ = {functions on H"}/{d,,f = 0} = {functions on R"}/{d,,f = 0} = T R".

Definition 8.6. Let v € T,,M, m € OM. We say v is tangent to the boundary if
v € TOM. We say v is outward normal if v is not tangent to the boundary and there

exists ¢ : [0,1] — M such that ¢ = v.

Proposition 8.3. Assume v,w are outward normal at m, then v = Aw + u, where A >0
and u € T,,0M.

Proof. 1t is enough to prove it in a chart that is for M = H". O

Proposition 8.4. Given M there exists a vector field & along OM, such that for any

x € OM, &(x) is outward normal.

Proof. 1t is true on H", £ 0

Take an atlas (U;, ¢;) on M, locally finite. On U; N OM, define & = (80;1)1(5%1)-
Take 1); a partition of unity, then we define £ = > 1); - &. O
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Definition 8.7. Assume M is oriented, then the canonical orientation of OM is given
by the form wy = icw, where £ is an outward normal.

The orientation on OH" is given by dxa A --- A dzy,.
Remark 8.5. U open set in R", then U is a manifold with boundary and U = Fr(U) :=
T\U.
8.3 More on differential forms

Exercise 8.4. For X = Zfi% and w =dx1 A -+ Adxy, what is dixw?

Proof.
ixw = Z(—l)i_lfidazl A Adzg A A dy,.
dixw = Z gizw

Exercise 8.5. Find a volume form of S™ to make it orientable.

Proof. Set w = dxgA---Adxy,. For any point x = (zg, - ,zy) € S” and then X = ina%i
is the normal vector at x, hence we take

n
Ixw = Z(—l)ixidmo Ao Adrg A Aday,.
i=0

O]

Exercise 8.6. v : S — S" takes u to —u, prove that 1 preserves the orientation if n is

odd, and reverses the orientation if n is even.
Proof. Just prove that *(ixw) = (=1)""liyw. O

Exercise 8.7. S* & RP" ~ S*/{£id}. So po =p.
Show that if n is even, then RP™ is not oriented.

Show that if n is odd, then RP™ is oriented.

Proof. Argue by contradiction for n even. Suppose RP" is orientable, then there is a vol-
ume form wg on RP”. Hence p*wy is a volume form on S” since p is a local diffeomorphism.
Note that p o 1) = p indicates p* = 1*p*, hence p*wy = ¥*(p*wp), which shows that
preserves the orientation. That’s a contradiction due to the last exercise.
For n odd. By local diffeomorphism of p, we can push forward the volume form on S™.
Notice that we should prove that the definition of volume form on RP" does not depend

on the choice of quotient map p or p o . O

38



9 Integration of Differential Forms on Oriented Manifold

Goal: w € Q"(M) with compact support and M has dimension n with M is oriented. We

want to define | W

Remark 9.1. Some people says wa =0 if w is not of degree equals to the dimension of
M.

9.1 On R"

Now w = fdx1 A --- A dx,. We define

/ w = fdzxy---dxy,
n R

here dx1 - - - dx,, is the Lebesgue measure on R™.

Change of variable formula, set ¢ a diffeomorphism from R™ to R", then
/(fogo)\detJ(ap)]dxln-da:n:/ fdxy---dxy,.
U (U)

Assume w is supported in an open set U C R™, assume that ¢ preserves the orientation,

¢ a diffeomorphism from U to ¢(U),

/ w—/cp*w.
o(U) U

9.2 On Manifold

Suppose w has compact support in a domain U of a chart U C M and the coordinates

map is .

Proposition 9.1. If w has compact support in (U, ) and (V,¢) where ¢ and ¢ preserve

[D = /w L

Definition 9.1. Let (U;, ;) be an atlas of M, where @; preserves the orientation. Let 1);

the orientation, then

be a partition of unity subordinated to Uj.

/(Ui,soiﬂlfi) o Z/ [(p; 1) (iw)).

M icr Y eiUs)

Proposition 9.2. fjf/[Ui’%wi) w does not depend on the choice of (U, i, ;) and then we

define
(Uirpisthi)
/ i / w.
M M
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Proof.

_ —IN* o ",
_Z/pwmm (o) (W)

27‘7

_ N (b
_Z/(pi([]iji) (901* ) (d}z )

1
Ui pini)
- / o.
M
(Partition twice.) O
Proposition 9.3. M is M with the opposite orientation,

fom e

Proposition 9.4. If o : M — N is diffeomorphism preserving the orientation, then

/ w—/ orw.
(M) M

9.3 Stokes Formula

Let M be an oriented manifold with boundary M. OM is an oriented manifold with

orientation i¢w where & is an outward vector field and w defining the orientation on M.

Theorem 9.1. For o € Q" (M) with compact support and dim M = n,

/Mda:/(9Ma
o= /f+/f o

Proof. w=dxi. tgy,w =1at b, and i_gp,w = —1. ]

Exercise 9.1. Show that

Proof. This formula is linear in «, then it is enough to prove it for o with support in a

chart. By H" we mean {(z; < 0,22, -+ ,2p)}
/a—/ da.
a:fdxg/\-'-/\dxn—kdazl/\Zgld:cg/\ AT A A dag,.
i=2
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Since z1 = 0 on P, then all the terms containing dx; vanishes. Then

/_/ lf(07w27".;xn)de/\"'/\dxn.
P Rn—

n

Now da = % dxyi N -+ Ndxy, + z:z(fl)ig—gi dxi A -++ ANdx,, then
1=

/ (/ (Cff dxl))dx2dl'm —'/ (f(o’x%,wn))dm’zdx )
Rn—1 21<0 0z -
/ (/ 6% dxi) day -+ d; - dry = 0.
R7=1 \Jz;eR OTi

Here we used the fact w is compactly supported. O

Corollary 9.1. If M has no boundary, then

/ dw = 0.
M

Theorem 9.2 (Brouwer fixed point theorem). Let ¢ : B"™ — B™ smooth (continuous),
there is © € B such that p(x) = x.

Definition 9.2. A retraction is a smooth map
F:B"—S"!'=0B,
such that F|gn—1 = id.
Proposition 9.5. There is no retraction from B"™ to S*1.
Proof. Let F be a retraction from B” to S*~!. Let w be the volume form on S*~!, then
0 # w—/ F*w—/ dF*w—/ F*(dw) = 0.
S§n—1 S§n—1 n n
O

Proof of Brower fized point theorem. For x € B"™ and ¢(z) # x € B"™, consider the di-

rected line ¢(z)z intersecting S"~! at F(x), hence F is the retraction. O

Proposition 9.6. If w = fwg, where wy is the orientation. If f > 0 and there is m € M
such that f(m) >0, then [w > 0.

We will prove it for M oriented and closed (no boundary and compact), the following

map is an isometry
H"(M)—R
w > / w
M
Exercise 9.2. Let w be an element of Q™ (R™) with compact support, and fRn w =0, well

prove that there is a with compact support such that w = da.
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1. Prove that
H"(S") =R

w w
Sn

s a bijection.
Since fS” volsn # 0, we say the map is not 0, hence bijective, then we have the

following statement.

Let w € Q"(S™), assume that [, w =0 then w = df.

2. Let xg € S™, then S™ \ {xo} is diffeomorphism to R™. Just stereographic 1.
Let w € Q"(R™) with compact support and [z, w = 0.
Y*w is defined on S™\ {xo} and is 0 on a neighborhood of xg.

Let wg = 0 on a neighborhood of xg and wy = Y*w,

/wgz/ @b*uz/ w = 0.
n S”\{QEQ} R~

Then there is an (n — 1)-form 8 on S™ such that df = wy.

Note that dB = 0 around xg, then by Poincaré lemma, there is ysuch that 8 = dv
around xo. We use a cut-off function to extend v to a global form 5 on S™. Then
define ag = 8 —d7, then ag is 0 around xg and dag = df = wg. Hence a = (1) a

is the o with doo = w.

Exercise 9.3. If w € Q" (M) with dim M =n > 2. M is connected, oriented and closed.

If [, w =0, then w is exact.

N

Proof. M = |J U; where U; are diffeomorphism to balls. Let 1; be a partition of unity
i=1

subordinated to U;, > 1; =1, ¢; > 0 and Supp¢; C U;.

Let m; € U; and let 0; open set such that m; € ¢; C U;. We want to show that V&,
there is a from w; € Q"(M) with Suppw; C 0; and [w] = > w;].

First we try w; = 1w, then w = >_ @;. But Supp@; is not necessarily contained in &;.
Hence we want to find a; with Supp o; C 0; and [o] = [@;].

There exists §; with Supp(8;) C €; and [, 3 # 0. We define a; = ! @Z- B;. Then

[ a; = [&; on U;, hence a; — @; = dy; with support in U;.

Let 4; = ~; on U;, 0 outside. w; = «; on U; and 0 outside. Then w; — @w; = d;. Then
[w] = 2 [wil.

Now we want to move these w; into one chart!

Let U be an open set in M which is diffeomorphisms to R". Let ¢1,--- , g, in U distinct
points. Then by the Theorem 13.3, there exists a diffeomorphism F' such that F(¢;) = m;.
Choose 0; such that F~1(0;) C U. Then we have

Fow] = Y [Frwil,
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by our construction Supp(d_ F*w;) C U.
Let 8 =) F*w; then Supp(8) C U, then

//B_Z/F*wi_Z/wi—O.
M M M
Thus 8 = da with Supp(a) C U hence 3 is closed. O

Now we conclude what we’ve proved: if M is a closed, oriented and connected, then
Jyyw =0 <= w = da, which indicates b"(M) = 1.
We will see that if M is closed but not oriented, then H"(M) = 0.
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10 Vector Fields and Flows

10.1 Differential equations
Definition 10.1. A wvector field on R", defined on & C R" is X : 0 — R™.

The associated differential equation is

da;i
dt

- Xi(xly T ,.’L'n).

An orbit of the differential equation is a solution c(t) = (z1(t), -+ ,xn(t)) of the last
equation, i.e. %(t) = X (c(t)).
Definition 10.2. A smooth vector filed £ is a map M LM = | | T M such that

(i) €(m) € T, M; o

(ii) for every m, there exists a chart ¢ = (x1,--- ,xy) locally & = 121 fia%i, where &;

are smooth function.
Definition 10.3. An orbit of £ is a curve c:Ja,b[— M, such that é(t) = &(c(t)).

Definition 10.4. A flow of a vector field € on M is a map ¢ : O — M, where O is an
open subset in M x R containing M x {0}. We use I, to denote O N{m} xR, ¢ satisfies

(ii) the map @|1,, : (m,t) — ¢(m) := ¢(m,t) is an orbit of the vector field £, i.e.

d

] outm) = €(oum).

Definition 10.5. We say ¢ is maximal, if for any flow (¢', ") then 0" C 0 and ¢|g =
¢

Theorem 10.1. Let £ be a smooth vector field on M, then £ admits a unique maximal
flow ¢.

Remark 10.1. In R™: existence and uniqueness of solution of ODE.

Definition 10.6. A flow is complete if 0 = M x R.

Theorem 10.2. If £ has compact support; then its maximal flow is complete.

Definition 10.7. A vector field is complete whenever its mazximal flow is complete.

Remark 10.2. Convention. Assume that for simplicity the flow ¢, {¢+}ier is complete.
Then

b1 0 s = Prys: Pr(Ps(w)) = drys().

(Zqé) | (00) = E0u(os()).

Grs(@) = 2| pule) = E(Gurule)).

- dw w=u+s

d

dt ‘t:u
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Let ¢y : t — ¢4(ps(x)) thus it is a solution of

c(t) = &la(t)),

c1(0) = ¢s().
Let ¢y : t — ¢pirs(x) and it also a solution of the last equations. By the uniqueness,
c1(t) = ca(t) for any t € R.
Definition 10.8. A vector field depending on time is a family of vector field {& }icr
such that (locally) & = il filtyxy, -+ ,xn)a%i, where the f; are smooth.

1=
The integral curve of & is a differentiable curve v : Jy — M, where Jy is an interval

contained in the domain of t, such that

7(t) = &(v(1)).

The flow of a vector field depending on time is ¢ : € — M, where O is an (good)
open subset in M x R x R containing M x {(s,s) € R?}, denoting ¢*(z) = ¢(z, s,u), we
ask

o (x) =T,
21(0)|_ = &(ok))
In other words, ¢ : t — ¢} (x),
(i) is a solution of
¢(t) = &ler(w)),
(ii) c(u) = x.
Especially we have %qﬁg(xﬂs:u = &u(t(x)) = &ul(x).
Exercise 10.1. ¢% o ¢S = ¢5. (Similar to prove ¢y o ¢ = Pi45.)
Remark 10.3. A (usual) flow is a flow depending on time & = &, then ¢f = pi—s.

We will prove the existence and uniqueness of flows depending on time.

A vector filed depending on time, is a vector field on M x R, &(m,t) = &(m).

10.2 Lie brackets

Definition 10.9. A derivation at a point m € M is a linear map 0 : C*(M) — R
such that

(1) 9(fg) = fF(m)d(g) + g(m)d(f),

(i) Of =0 if f =0 on V(m).

A derivation on M is a linear map 0 : C*°(M) — C>®(M).

(ii) indicates that if f = g on V(m), then 0f = 0g.

If a function f is just defined on U € V(m), then we can define uniquely

Of =0y f),

where Suppy C U and ¥ =1 on V(m). (It does not depend on the choice of 1.)
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Theorem 10.3. (a) Every vector X in T,,M defines a derivation

Ox f:=df(X).
(b) Conversely every derivation is uniquely of this form.

Proof.
(a) Let X be a vector in T),,M, there exists a curve ¢(t) such that ¢(0) = m and
¢(0) = X, we have

d
df(X) =21 _,

then (a) follows from derivation of products.
(b) If f is defined on U € V(m), let X be coordinates on U with X(m) = 0. By

Taylor’s formula,

(foc(t),

n n
m) + Z a;Ti + Z hixi,
i=1 i=1

where a; are constant and h; are smooth function with h;(m) = 0.

Let O be a derivative, then

d(a;z;) = a;0x; + x;(m)da; = a;0x;,
8(hz$l) = hz(m)al}z + xz(m)ahz =0.

n
Hence 0f = > a;0x;, where a; = g—f (m) and Oz; are constant. Then we define the vector
=1

field Y = Z(axl) , then

= zn:aidaz:Z Z 8x] Z a;0x; = O0f.
i=1 j=1
L]

Definition 10.10. A derivation on a manifold is a linear map 0 : C°(M) — C*°(M)

with two properties
(1) If f =0 on V(m), then 0f =0 on V(m).
(i) O(fg) = f0g + gOf.
Theorem 10.4. (a) Every vector filed X on M defines a derivative on M by Oxf :=

df (X).
(b) Every derivative on M is obtained by a unique vector field.

Proposition 10.1. If 0, and 02 are two derivations, then

[01,8a] : f = 01(0a(f)) — D2(01(f))

s also a derivation.

Then we have the Jacobi identity,
[alv [82783]] + [82) [837 81]] + [837 [alv 02]] =0
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Definition 10.11. Given two vectors fields X,Y , the Lie bracket [X,Y] is the vector field
such that

Iix,y] = [0x, 9y].

Remark 10.4. The following notations stand for the same thing:

df(X), oxf, Lxf, X-f.
For example,
(X Y] f=X-(Y-f) =Y - (X-]),
Lixy1f = Lx(Ly f) = Ly (Lx f).

Proposition 10.2.

(i) [X,Y] = —[Y, X],

(it) [X,[Y, Z]] + [Y,[Z, X]] + [2.[X,Y]] = 0.

(iti) [fX,Y] = fIX,Y] = (Y- [)X.

Proof.
[fX. Y] g=(fX)-(Y-9)-Y-(fX9)

=fX-(Y-9)- (Y -f)X-9)—fY-(X-g)
= (fIX,Y] = (Y- /) X)g.

]
Exercise 10.2. X = ) fi%, andY = > gZ-%, then
i=1 ! i=1 !
9gi afi\ 0
e g (5o o) o
Proof.
X,Y] = Z[fz 9]
i jax
:Zf.[i o, o0
. ! 8a:i’g]6x~ g]axj 8@
B 0. 0dg; 0 0fi 0
Zfl gj i ] 0x; 8:133) 97 dxj Ox;
Zf 89] 9 afz v
'O, al’j 97 &E] ox;
Z f agl af’t 8
a J ]8% 81‘1
]
Exercise 10.3. [ax, 8ay +x%] = %.

47



Definition 10.12. We define LxY = [X,Y].

Then [X, fY] = (X - /)Y + f[X,Y] can be written into

Lx(fY)=(Lxf)Y + fLxY.

10.3 Linear Differential Fields
Let A € M, (R"™), define X 4(z) = A -z, such a vector field is called linear.
Exercise 10.4. [X4, Xp| = X_{4 p), where [A, B] = AB — BA.

Proof. Set A = {ag} and B = {bi} Then X4 = Za x]ax , and Xp = Zb]x]axl.

7] 7]
(A, B)] = Ek:abe —bFal. Xiap = 'Zk( afb], — bFal)a; 2.
17]’
0 0 . . o
[(Xa, Xp] = Za %8 Zbk g Z a; fﬁgbl 5187_%%5? 58 = Z(aibf—bﬁaf)xj%.
1,5,k i,5.k v

O
Let X4 be a linear vector field associated to A, what is the flow of X 4 is
dy(x) = et - 2.

Exercise 10.5. Let ¢ be a diffeomorphism from M to N. Let X be a vector filed on
M with flow ¢. Let q}t = 1o ¢y ot Show that qgt is the flow of some vector field
Y(y) = (Tp-10)0) X (0 ()
Proof. Set ¢ : M x R — M, then ¢ : N x RN. For any n € N, set m =~ (n).
(i) ¢(n,0) = o g ot} (n) =0 go(m) = 9(m) = n.
(ii)
g 1) = L], (Wodiov™ () = T _oau(m)) = (Luth) X (m) = (Tyms ) X (6 (0).
O

Proposition 10.3. Let X,Y be vector field on M, X has flow ¢ and let Yy = ¢¢(Y),

then
— Y, = —[X,Y].
dt‘t:O ! X, Y]
Remark 10.5. Convention: ¢* = (¢~ 1),.
Hence by defining Zy = ¢;(Y), we have
—| Z;=[X,Y].
dt’t:O =Xy

Note that ¢y : ¢¢(U) — U will push Yy, into T,,M.
Let f: M — R, then

Lxf = df(X) = Lo 00 = L(6i()
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Labourie’s Proof. Let Z = 4 ¢E(Y)). Let f: M — R.
ds s=0" °

(Lefn =@ (5] @300 )
= @) (5], Torm 8- Vo)
= | (T ) Vo)
= ) om0 6= Yo

where the third equality holds since (df)y, is just a linear transformation on 7,, M, inde-
pendent of s, and the fourth equality is the derivative of component function.
Let define g5 : M — R. gs(m) = [dpn(f 0 ¢—s)](Y(m)) = Ly (f o ¢—s)(m). Then

(Lafn =] _gwodulm) = 5| (goo)m)+ o] (g0 a)m)
Note that
;Lo,so@s o ¢1)(m) = Lx(gs(m))| _ = Lx(df(Y))=LxLy}.

0

; (gs00)(m) = 7| _ Ly (f 0 6-s)m) = Ly (5

Os ‘tzO,szO

fo m) (m) = —Ly Lx f(m).

O]

My Proof. We prove directly that

d
Gl o) = XY

We denote the Jacobi matrix of ¢; as A, and the Jacobi matrix of ¢_; as A, ! note that
(o (u)Ag(u) = Ag(u) A (op(u)) = id : T,M — T,M. Note that Ay(u) = % (u).
Derivate A; *(¢¢(u))As(u) = id by t, we have

d

5 A o) = =47 0 0) (G A0)) 47 o)

875

Let X = a'0;, Y = b'0;, and we use {a'}, {b'} to denote these volume matrix, which

is a matrix function around .

O+ (Y) = A7 (6e(u){b"(de(u)}-

49



Derivate by ¢, in matrix form, we have

Lx¥ = ] o 0) = (] AT 00 ) (ontu} + 45 (ontw) (] _, 0}

=~ (o) (Aw)) 4 ) ) | 00} + 1 ot

t=0

- (CZ) B At(u)> {b*(u)} dt] b (¢ (u))}

] % J
(5] SR wh) wy +

t=0 " OxJ

}

o

:_<M%ﬁ“wgw%» 2 e W)

8@ bt

i )HO (w)} + {5, )Hd (w)}
8@ b

— — S WY (W0, + 4 (w)ad (),
=YX+ XY =[X,Y].

Proposition 10.4. Lx(fY) = (Lxf)Y + fLxY.
Example 10.1. When X = X4 and Y = X5,

Yi(u) = @Y (u) = (Ty_, ) 0t) (Y (d—t(u)) = e'“Be~ .

d
7 tont(u) = (AB — BA)u = [X4, Xplu = —X|4 pju.

Example 10.2. Let {4} be the flow of X, and {3} the flow of Y. Assume that ¢pyoths =
s o ¢y for any s,t, then [X,Y] = 0.
What is the flow of Yy ¢
Ve = b0 P o dos = .
In this case, the flow of Yy is the flow of Y, hence Ys =Y. Then %Ys = 0.

Example 10.3. Assume [X,Y] =0, then ¢, 0 s = s 0 ¢y for any s,t.

=dwm%WMZiﬂhm@mﬂﬁtzﬁwww(i%@%@)
hence - ’ =0, hence Ys =Y for any s. Then their flows coincide
Ps 0o d_s =1y,
that is what we need to prove.

Geometric interpretation.
Assume that [X,Y] = 0, then we have ¢5 0 1y = 1)y 0 ¢5. Given mg € M, it allows us
to define F : R? — M, such that

F(s,t) := (¢s 0 1) (mo).
Then we have %% (So,to) = X(F(So,to)) and % (S(),to) = Y(F(Sg,to)).
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Definition 10.13. Let w be a k-form on M, we define the Lie derivative of forms as

Psw)-

d
L = —
xw ds s=0(

This is coherent when degw = 0.

Proposition 10.5.
(a). Lx : QF(M) — QF(M) is linear;
(b). Lx(aANB)=LxaANB+aALxp;
(c). Lx(dw) = d(Lxw).
(d). Lixyw = LxLyw— Ly Lxw;

(e). Lie-Cartan formula
Lxw= d(ixw) + ixdw.

Proof. (a) is trivial. (b) is from the fact ¢;(a A ) = ¢fa A ¢;5. (c) is shown in the
following calculation,

d . d ey . d

Lx(dw) = 1 5:0(¢de) =1 5:0(d¢5w) =d 5:0(

The proof of (d) is by induction on the degree of w. For degw = 0, it is the definition

of [X,Y]. Assume that it is true for degn =p — 1,

piw) = dLxw.

Lixym=LxLy — Ly Lxn.

Any form of degree p can be written into the following form
W = Z fidaiv
i€l

where «; are p — 1 forms. Now

Lixyw = Lixy] (Z fidai>

el
= Z(L[X,Y]fl)daz + fz(L[XJ/]dOéz)

icl
= Z(L[X,Y]fi)dai + fid(Lx y)o:)
icl
= Z ((LxLy — Lny)fi)dai + fid(LXLy — Lny)Oéi
icl
= Z ((LxLy — LyLx)fi)do; + f;(LxLy — Ly Lx)dey
iel
= Z(LXLY — Ly Lx)(fidoy)
iel
= (LxLy — LyLx) (Z fidoéi>
iel

= (LxLy - Lny)w.
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Exercise 10.6. Any form of degree p can be written into the following form
W= Z Jida,
el

where a; are p — 1 forms.

The First Proof of Lie-Cartan formula. For degw = 0, set w = f, then
ixdf +dixf=ixdf =df(X) = Lxf/.

Or we can also prove for degw = 1.
Now we assume the formula is true for deg(p — 1).

First case is w = fda, where dega = p — 1, then

Lxw = Lx(fda)
= (Lxf)doa+ fdLxo
= (Lx f)da+ fd(ixda + dix«)
= (Lx f)da + fdixda.

ixdw + dixw = ixd(fda) + dix (fda)
= ix(df Ada) +ix(fdda) + d(fixda)
= (ixdf)do — df Aix(do) + df Aix(de) + fdixda
— (Lxf)da+ fdixda

Then this formula is true for w = fda. We deduce Lie-Cartan is true for all w of degree

p, using the linearity of Lx, doix and ix od. O

Now we check the Special case of Lie-Cartan formula 7.1.
Js(m) = (m,s) and ¢s : (m,t) — (m,t + s) is the flow of 9;. Js = ¢ 0 Jp and
(Js)* = Jg5 5.

d

ds
We pull them back through Jj, getting

i (5] o)) = (5500

10.4 Frobenius Theorem

O(gbzoé) = Lasoz = i@sda + diasa
s=

(J5 ).

s=0

s=0> (0) = %

Definition 10.14. M is a manifold, TM = U,epyT, M. A sub-distribution (or a
distribution) of rank p, is a family {Py}rens such that for any x, P, is a vector subspace
of dimension p pf T, M.

A distribution F of rank p is smooth if for every m, there exists smooth vector fields
X1, ,Xp on a neighborhood of z, such that Xi(n),---,X,(n) is a basis of F,.
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For example, (i) a vector field X such that X (m) # 0 on M, then P,,, = RX(m).

(i) Let U be an open set in R” x R¥, Pimn) = 10} X R* TimmR™ % R¥.

(iii) If U is an open set in M x N. P, ny = TN X {0} C Ty, )M x N.
Definition 10.15. A distribution is called integrable if for any x € M, there is a chart
(U, X) at x such that X.(F) is of type (ii).

Or equivalently, o distribution is called integrable if for any m € M, there is a
submanifold Ny, > m, such thatVxr € N, T,N,, = F,.

Exercise 10.7. If we can find X1,---,X, as above that that [X;, X;] = 0, then F is

integrable.

Proposition 10.6 (Pre Frobenius). Assume that on a neighborhood of m (any m € M ),
there exist k-vector fields defined on U,
(i) X1(n), -, Xx(n) is a basis of Fp, Vn € U,
(it) [Xi, X;] =0 for any i, 7.
Then F is integrable.
Proof. Let m € M, let ¢ is the flow of X;. We know that ¢io @) = ¢} o ¢! (condition (ii)).
Define

V] —eelf - M
(b1, s t) = (6, 0+ 0 g7, ) (m).

Then

0 0
T(t1,---,tk)1/} <8tl> - aitl (Z% ° (15?2 -0 qﬁfk(m) = Xl(qstll -0 (;S,Ifk(m))

Similarly, due to ¢’ and qﬁ{ commutes, Tw(%) = Xj(¢j, 00 qﬁfk (m)). Then

s=t1

Tpry(V( = e,e[)) = Im(Tre) = Span(X1, -+, X)) = Fy(r)»
where T standing for (t1,--- ,tx). O

Theorem 10.5 (Frobenius Theorem). F is integrable, if an only if VX,Y such that
X(m) € Fo and Y (m) € Fp, then [X,Y](m) € Fp,.

Remark 10.6. If X is a vector field, for any m, X(m) # 0. Define L, = RX C TM,
then the 1-dimension distribution is integrable (<= ezistence of solution ODE).

Hence every 1-dimension distribution is integrable.

Non-Ezample. OnR3, X = 8%7 Y = %—i—x%. Then Fy.y,2) = (X, Y) is not integrable.

Note that (X,Y,[X,Y]) is always a basis of R3.

Proof of Frobenius Theorem. = is note difficult due to the definition of integral.
For <, we will prove that there exists Xi,---, X} a basis of .#, with [X;, X;] = 0.
O
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11 Vector Bundle

11.1 Definitions
TM = U,TyM, F = UyFy, NF(T*M) = U,T; M denoting family of vector spaces.

Definition 11.1. A vector bundle of rank k is a triple (7,E, X) where £, X are topo-
logical spaces (which are nice: Hausdorff and o-compact), and 7w : € — X is continuous.
We call m as projection, £ the total space and X is the base space.
(i) The fiber at x, &, = 7~ 1(x) is a vector space of dimension k.
(ii) Local trivialization property: given x € X, there exists a neighborhood U of x

(trivializing neighborhood), and a continuous map ¢ (called trivializing),
-1 . ¢
7 (U)=:&ly - ExU,

where E is a vector space, such that

(1) (&) = E x {x},

(ii) |, is a linear isomorphism with E x {x}.

Example 11.1. Trivial bundle over X, for E any vector space, € = E x X with (e, z) =

x.

Example 11.2. Tautological bundle.
Gr(E) = {P vector space in E of dimension k}.

ExGg(E) D1 ={(u,P) € Ex Gi(E):ue€ P}.

71 = GR(E), (u, P) — P.

The fiber n=1(P) = {(u, P) : u € P} = {u € P} a vector space of dimension k.
Let P € G(E) and Q a vector space such that P ® Q = E. We defined

UP,Q = {Pl S Gk(E) ) Q= E}
For every P' € Upg, let \pr : P! — P such that x — Ap/(x) is parallel to Q.

¢:Tk|UP7Q — PxU

(Uapl) = (AP’(U)ap)'

Now @[ —1(pry = Apr and Aps is an isomorphism.
Define ¢ : E x Upg — P x Upg, (u, P') — (A(u), P'), where X is the projection from
E to P such that E(z) — x parallel to Q. Note that A\pr = N pr and ¢ = g[3|7k|UPQ.

Exercise 11.1. Accept the fact that the total space of the tautological bundle of RP! is
the Mébius band.
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Definition 11.2. A continuous section of w : £ — X is a continuous map o : X — &
such that o(x) € &;.

For example, Zero section og : x — 0, the zero of &,.

Space of section is denoted by T'(E), it forms a vector space.

Morphism is
f

g2
X
with ¢(E;) = Fy and ¢|g, is linear.

Definition 11.3. Let £ be a vector bundle, a sub-bundle is a closed subset F C E. such

that F N E; is a vector subspace of &;.

Proposition 11.1. Every sub-bundle is a vector bundle such that the injection is a mor-

phism.

Example 11.3. Let F be a smooth distribution, then F is a sub-bundle of TM (whether
F integral or not).

Theorem 11.1. Every bundle over X (compact) is (isomorphic to) a sub-bundle of the
trivial bundle over X.
Definition 11.4. £ — X is a vector bundle, and ¢ : Y — X continues,
P1(E) —— €

b
vy —5— X
Here

©*(€) = (u,y) EEXY 1u € &y}
m:0*(€) =Y, (u,y) = y. w_l(y) ~ 5¢(y).

Proposition 11.2. ¢*(€) has the structure of a vector bundle, moreover, there is ® :
©*(E) = &, and @ : (p*E)y — Eyy) is isomorphism.
©*(&) is called the induced vector bundle by ¢.

Definition 11.5. The cocycle point of view.
Let m: £ — X a vector bundle. Let {U;}icr be a covering of X by trivializing neigh-

borhood.
%

(UiﬂUj) x FE

5‘UiﬁUJ‘

&)
ij

id (Ul'ﬂUj)XE

V9 (z,u) = (2,90 () (u)), where v : U; NU; — GL(E).
For any x € U; NU; N Uy, we have the cocycle condition

ki ij _ ,1kj
xow:r_ x
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Given a vector bundle and trivializing covering, we get the cocycle ¥ : U; N U; —

GL(E).

Theorem 11.2. Assume we have a covering {U;} of X and a cocycle ¥ : U;NU; —
GL(E), then there is a vector bundle £ — X whose cocycle is 1.

Sketch of the proof. Define
V =Uier(U; x E) ={(i,z,v) :i € I,x € Uj,v € E}.

We need to glue back fibers over U; N Uj.

Let we introduce an equivalence relation on V,
(i, 2,u) ~ (j,2,0) <= v =9 (z)u.

The cocycle condition tells us this is an equivalence relation. Define £ = V/ ~.
We need to show that V is a topological space, and the topology on £ is the quotient

topology. 7 : [(i,z,u)] — x is a projection. O

E,F — X two vector bundles, let {U;} be trivializing covering of £ and F, 1/1? :
U;NU; — GL(E) and 4% : U; NU; — GL(E).
GL(E & F) > GL(E) x GL(F),

o (E )
Vi = ]
( v

satisfies the cocycle condition. The associated vector bundle is € @ F and the fiber (£ ®
Fla=E & Fy.

Exercise 11.2. £ ® F = &, ® F;, prove it with cocycles.
Let M be a manifold with atlas (U;, X;), X; : Uy — 0 C R™.

U; N Uj — GL(R”)
T soffc) = (T, X)) (T, X"~ € GL(R").

An atlas gives — cocycle — a vector bundle structure on T'M.

TM|y, 2 U; x R™.

¢i(u) = {2} x (a1, ,an),u = Zaiai_
=1 v

Definition 11.6 (Smooth Vector Bundles over Manifolds). 7 : & — X smooth, £, X are
manifolds. We also need the trivializing maps are smooth.

The cocycle point of view, 1" : U; N U; — GL(E) are smooth.

TM, \F(TM), T*M are smooth bundles. If £, F, then £ @ F ... are smooth.

o6



11.2 Moser Theorem and Flow-Box

Let M be a compact oriented manifold of dimension n, M = @.
Let w € Q"(M), then

w=0 <= w is exact.
M

Theorem 11.3 (Moser). Let wy and wy be two volume forms on M. Assume that fM wo =

fM w1, then there exists ¢ preserving the orientation, such that
P wy = w.
Hint: use flows, find a vector field depending on time.

Exercise 11.3. Let w be volume form on E a vector space of dimension n.
v n—1 * .
E — AN"H(EY), uriyw.
Prove that U is an isomorphism.

Proposition 11.3. If ¢y is 1-parameter of diffeomorphism then

d
S (ah* — L
dt (%Oé)‘tzo X

where X (m) = %’t:o(w(t)(m))'
Proof of Moser theorem. Since fM w1 —wp = 0, then there exists £ such that df = wg—w;.

Set wy = twy + (1 — t)wp, t € [0,1]. Note that w; is a volume form. By Exercise 12.3,

there is X; a vector filed depending on time such that ix,w; = 5. Hence
wo — w1 =df = dix,ws = Lx,w;.
Let ¢¥ : M — M is the flow with respect to X;. Note first
P © O = ¢;-

With the proposition 12.1,
d

ds

since %‘S:tgbf(m) = Xy(m).

We now show that %}Szt((qﬁf)*ws) =0.

t((ﬁbf)*wt) = Lyx,ws = wp — wi,
sS=

d

d d
| (@) = —| @D w+ 0D | _w,

Sls=t

s=t

= Lx,wt + (wp —w1)
= (wo —w1) + (w1 — wo)

=0.
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Finally, because (¢3)* = (¢?9)* o (¢§)*,
d

0 —

- ds (<¢(8))*ws)v

(e =@ 2]

hence %‘S: ((#5)*ws) = 0 since ¢} is a diffeomorphism. Now
wo = (6p)"wo = (¢g) wr.
O

Theorem 11.4 (Existence of a flow-box). Let X be a vector field, let m such that X (m) #
0, then there is a chart (U, ) at m such that 4,0*(%) =X, where p: U - 0 CR x E.

Proof. 1. Given X and m, there is a submanifold N of dimension n — 1 (n = dim M),
such that for any x € N, X (z) ¢ T, N.

2. Produce ¥ a local diffeomorphism from N x| —e,e[— M such that ¥,(9;) = X.

Let (¢¢) be the flow of X, then we define ¥(x,t) = ¢(z). We need to prove that ¥ is
a local diffeomorphism.

Timo)¥ = Tim,oyN ®R. Let u € Ty, 0)N, we have (T, 0)¥)(u,0) = u. T, 0)¥(0,1) =
% 0¥ (m,s) = X(m). Hence T(,, )V is invertible, by local immersion theorem, it is a
local diffeomorphism. O

Proposition 11.4. F is a sub-bundle of £, that is, F is a closed subset of £ and F N &,

is a vector space. Then F is a vector bundle over X.

Proof. 1t is enough to prove this property whenever £ = E x X a trivial vector bundle.
1. Show that dim(F N&,) is constant. (F is closed subset).
2. You want to find U C X such that Fy can be trivialized.
Let 29 € X, and Py a subspace in F, such that Py & Fp, = E.
Claim: there exists a neighborhood U of xg such that for any x € U, Py & F, = F.
Let g be a euclidean metric on E. Assume there is (x;) — o, by contradiction such
that Py N Fy, # {0}. Let u; € PyNF,, and |u;| = 1. Extracting a converging subsequence
to ug, then up € Py and ug € F,, (since F is closed), then we get a contradiction.

Then there is a trivialization of F|y,
Flu N Foog XU, vEFy— (Ww(v),x),

where 7, is the projection from F, to F,, parallel to Py.
1) is continuous, being the restriction of a continuous map 7 to a closed subset. 7 :
E=ExU— Fyy x U. O
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12 Connection

From now no, we speak about smooth real vector bundle, over smooth manifolds.

Space of sections of &€ — M is denoted by I'(£). Special notation, I'(TM) = x (M),
L(AM(T*M)) = QF(M).

Important construction: F = A¥(T*M) ® £ — M, the fiber of F at m is

Fm = AT M) ® E,, = {k — forms on Ty with values in &,,}.

Denoted by QF(M; &) := T(AMT*M) ® £).
Goal: for any two points z,y € M, using an extra structure (Connection) and a curve

c from z to y, getting a linear isometry from &, to &, (Parallel Transport).

12.1 Connection and Parallel Transport

Definition 12.1. a (Koszul-) connection € — M is a linear map T'(TM) xT'(E) — T'(E),
(X,0) — Vxo, satisfying for any f € C°(M),

(i) Vixs = fVxs.

(it) Vx(fs) = fVxs+df(X)s.
Example 12.1. £ = E x M the trivial bundle, then I'(§) = C*°(M,E). The trivial
connection on E x M is Dxo := (Do)(X). For any f € C*°(M), Dyxo = (Do)(fX) =
fDo(X). Dx(fo) = (Dfo)(X) = df(X)o + fDxo.

Let w1, -- , %, be functions on M and > 1y = 1. Let V!,--- V" be connection on

M, then V := > 1;V" is also a connection: Vxo =3 1;Vio.

Proposition 12.1. If V is a connection, (Vx0 ), only depends on X,o on a V(m).

Proof. Let X1 = X9 on a V(m) and 01 = o2 on a V(m). Let ¢ = 1 on V(m) and
Supp vy C U, then v X1 = ¥ X5 and Yo = os.

Vx,01 = Vyx,vo1 = Vyx,Yo2 = Vx,09.

Proposition 12.2. FEvery vector bundle admits a connection.

Proof. Let {U;}ier be a trivializing cover on M, i.e. |u> ~ & xUy. Let {t;}ier a partition
of unity associated to U;.

Finally let D? be the trivial connection on €|y,, then we define if X € x(M), o € T'(€),

VXU = Z@ZJZ(DE(U)

=1

This is well-defined since Supp v¥; C U;, and V is a connection on £. O

99



Definition 12.2. Difference between two connection.
Let V1 and V3 be two connections on €& — M, then there exists A € QY(M,End(€))
such that
Vo —Vio = A(X)o.

Proof. Let define B: TM x £ — &, B(X,0) = Vio — V0. Then B(fX,0) = fB(X,0)

and
B(X, fo) = Vx(fo) = Vix(fo) = fB(X,0) + df (X)o — df(X)o = fB(x,0).
Then B is a tensor. By the lemma below, there exists a section A of the bundle
TM*®E* ®E =TM* ®End(E) = Q' (M, End(€)).

O]

Lemma 12.1. Let &1, -+ , &, F be vector bundles over M. Let v be a k-multilinear map

P :T(&) x -+ xT'(&) — T'(F),
such that for any i, any f € C*°(M),
Y(o1, - foi,- - o8) = foor, -, 0%).
Then there exists C, a section of
R0 F=G,

such that
¢(O’1, e 70k)m = Cm((Ul)m, e (Uk)m)

We say v is a tensor.

Proof. If 0; = o} on V(m), then ¢(o1,--- ,0k) = ¥(0},--- ,0%) on V(m). (Repeat the
proof about Vxo.)
It is enough to prove the result on V(m), that is when & = E; x U and F; = F x U.

Let (G/;-)je]i be a basis of E;, 0; = Z fija,;, then
J

k
w(Ul"" 7Uk)m = ZHflgl(m)w(a]lN 7a;€k>'
1=1
Then we define C: M = £ ®--- @& @ F as

1,% k% 1 k
Cm:Z% ®”.®ajk ®w(aj1"” ’ajk)'
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Proposition 12.3. If V is a connection and A € Q'(M,End(TM)), then
V+A:(X,0)—= Vxo+ AX)o
s also a connection. Then the space of connection is an affine space.

Proposition 12.4. Let X be a vector field, o a section of £, let m € E and ¢ a curve in

M with ¢(0) = X, then (Vx0)m only depends on X, and the restriction of o along c.

Proof. Locally, V.= D+ A, where D is the trivial connection on U and A € Q' (U, End(¢)).
(Vx0)m = (Dx0)m + (A(X)0)m,

the latter one only depends on X,,, and o,, since it is a tensor. And (Dx o)., = (Dp0)(X) =
%‘tzo(aoc(t)). O
Theorem 12.1 (Existence of Parallel Transport). Let ¢(t) : [a,b] — M be a curve on M,
let u € &y, then there exists a unique u(t) section of £ along c, such that

Moreover, (i) if k € R, then (ku)(tz) = k(u(t)), (i) if u and v are two vectors in &)
then (u+v)(t) = u(t) +v(t) (i.e. linear map from Eqpy to I'(c*E)).
u(t) is called the parallel transport of u along c(t).

Proof. Let U be a neighborhood of ¢(ty) on which € is trivial € = E x U.

Veoul)imgy = 7], (00 c(0) + Alet0)ulto)

where V = D 4+ A. Check that this does not depend on the choice of trivialization.

To prove the existence and uniqueness of u(t), it is enough to work locally solution of
d :
&u(t) + A(é(t))u(t) =0,

with the initial condition «(0) = u. This is a consequence of the existence and uniqueness
of solution of ODE on [a,b]. This is a linear equation hence (i) and (ii) holds.
Remark: The well-definition of A on ¢ comes from the independent of the choice of

trivialization. O

Definition 12.3. We define the Holonomy linear map Hol. : Eqg) — Eqy, v — u(l)
where u(t) is the parallel transport of u along c(t).

If a and B are two curves and a(1) = ((0), then
Holg o Hol,, = Holgyq -

Theorem 12.2. Hol, is a linear isomorphism, for ¢ : [0,1] — M

61



Proof. Let ¢ : [0,1] — M, &(t) = ¢(1 —t). Let u(t) be parallel section along ¢, then

u(t) = u(l —t) is a parallel section along ¢. In particular,
(Hol.)™ = Hols.
O

Recall the pull-back of vector bundle. Define ¢ : X — Y, let 7 : £ — Y, we defined
the vector bundle ¥*& — X as

Y E={(u,r) €E X X 1 u€ &y}

If (Ui)ier is a trivializing cover of £|y, = E x U; with cocycle U; N U; £ GL(E).
Then (~1(U;))ies is a trivializing cover of X for ¢*&.

Y U) N ) Y Ui n oy £ GL(E).

Y*p" are the transition functions. These satisfy the cocycle condition hence 1*€ is a
bundle.

What happens in a trivialization? In general if O; is trivialization of &€ — Z, i.e.
Elo, = E x O;. A section o|p, is a section of &|p,, O; — E with the compatibility
condition on O; N O;, 0;(z) = Y (x)o;(z).

Induced section ¢* : I'(E) — I'(¢*E), 0 — Y*o, we can 0} = g; 0. Then o satisfies

the compatibility condition with respect to 1*p%.
Remark 12.1. Not all sections of Y*E is induced sections. For example X — Y = {0}.

Definition 12.4. Induced connection.

Let £ =Y be a vector bundle over Y, V be a connection on £, and ) : X — Y. There
exists a unique connection Y*V on ¥*E such that if u € T, X, o is a section of £ defined
on V(ip(m)), then

(V" V)u(¥0)]m = ¥ [V ey lym)-
(" V)u(¥ o) = " (Vy,u0).
Proof. Let V! and V? be two connection satisfying V.(¢*0) = VZ(¢*0) = ¢*(Vy,u0).
Let write V! — V2 = A € Q1(X,End(¢*€)). Thus A satisfies A(u) = 0 for every u € TX,
thus A = 0, hence V! = V2.

Existence part: First case assume that £ — Y is trivial, £ = E x Y. Any connection
on E is D+ B, where B € Q}(Y,End(E)). Now *€ = E x X. Let us define V! on E x X,
V! = D +4*B, where ¢*B(u) = B(T(u)).

Let us check that

V(¥ o) = Da(o 0 9)(u) + (v B)(u)(0(4(2) = (Vryw)0)p(a)-

For the general case, take a trivializing cover of Y = {U;}, then on v~ }(U;) C X, we
define V' = ¢*(V|y,). Then by uniqueness, V' = V7 on ¢*(V|y,) N¢*(V|y,). We define
*V = V; on Uj. 0
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Now a section along ¢ : [a,b] — M is a section of the bundle ¢*€ — [a, b], u(t) = c*u(t).

We make it more clear,
Vepu(t) =0 <= (c"V)g,c'u = 0.

Theorem 12.3. Let £ — [a,b] be a vector bundle with a connection V, then given any

u € &,, there exists a unique section u(t) such that
u(a) =u, Vau(t)=0.

Proof. 1t is enough to prove this result on [top — €,t + €]. Given u € &, there exists u(t)
such that u(tp) = v and Vy,u = 0 for any t € [tg — &, 1o + €].
Choose € such that E[j;_c 4+ is trivial: £ x [tg —¢&,t0 +¢]. Set V=D + B and

d
Vou=0 < &u(t) + By (0)u(t) = 0.

In other words, the curve u(t) € E satisfies
u(t) + C(t) - u(t) =0,
where C(t) = B(0) : [to — &,t0 + €] — End(E). O
Now we have finished the proof of the existence of parallel transport.
Corollary 12.1. Any bundle £ — R is trivial.
Proof. Let uy,--- ,u;, be a basis of &, define RF x R — &,
((al, e ,ak),t) — Zaiui(t),
where wu;(t) is the parallel transport of w;. O

Exercise 12.1. Fvery vector bundle over a contractible open set is trivial.

12.2 Connection and curvature

Another point of view on parallel transport: Horizontal distribution.

Let £ — M and € itself is a manifold.
Definition 12.5. An horizontal distribution is a distribution F, C T, such that
Tr: Fy, — TW(U)M,

is an isomorphism.

Ker(T,m) = Tu(&r(u)) is called the vertical distribution V,,.

We have (i) dim F,, = dim M, F,, N Ker(T'r) = {0}.
Fu is an trivialization distribution iff Vu € &, F, ® V,, = T,.E.
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Proposition 12.5. A connection V on & defines an horizontal distribution FV such that,

foru:la,b] — &, u(t) € ]-"uv(t) iff u(t) is parallel along the curve c(t) = mu(t).

Example 12.2. £ = E x M and D is the trivial connection. u(t) is parallel along c(t),
iff u(t) is constant along c(t), as a map [a,b] = E,
iff curve u(t) is tangent to the distribution {0} x TM of T(E x M),
iff u is tangent to the distribution Fy p) = {m} x T M.

Proof of proposition. Consider a trivialization |y, = E x U; and V = D + A. Let u :
[a,b] = Eu,, u(t) = (v(t),c(t)), where v(t) € E and c(t) € U.
d .
Vau(t) = (S0(t) + Ay (6(0)) - v(t), ),

hence Veu(t) = 0 iff 0(t) + Acy)(¢(t)) - v(t) = 0.
Let
]:(Z,m) ={(w,y) € EXT, M :w+ Ay(y)v =0}.
(v(t), c(t)) € Elu = E x U is tangent to FV, iff (6(t),c(t)) € FV, iff o(t) + Ay (&(t)) -
v(t) =0, iff Veu(t) = 0. O

FV is integrable, iff V is locally trivial, iff there exists trivialization £ = E x U in
which V = D, iff RV =0, RV € Q?(M,End(E)).

In general, w = Tr(RV /AR RV) is a closed 2n form on M. Its cohomology class
only depends on & — M.

Lemma 12.2. Von7m:E& — M and X € x(M). There exist a unique vector field Y on
& such that (i) Y is horizontal (Y, € FY ), (ii) (Tym)(Yy) = Xr(u)-

Definition 12.6. Y is the horizontal lift of X.

Proof. T, is an isomorphism between F." and T, M. Locally, £ = E x M trivial, then
Yy = (—Az(X)u, X). O

Lemma 12.3. Let X € x(M) with flow ¢y, Y € x(E) with flow vy is the horizontal lift of
X. Then (i) moyy = @iom, (i) t — u(t) = P(u) is parallel along the curve c(t) = p(x).

Proof. Let u € £ and © = w(u). Define &(t) = 7 o ¢¢(u), then

d| d
ds S:tC(S) = (T%(U)W) <dS‘s=th(U)> = th(u)ﬁ(yw(u)) = X&(t).
Then ¢é(t) is an orbit of X, hence ¢é(t) = ¢¢(x). 0

Definition 12.7. A connection V is flat if V. = D in a local trivialization.

Theorem 12.4. FV is integrable iff V is flat.
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Proof. If V is flat. In a trivialization V = D and £ = E x M. The horizontal distribution
is
Foomy = {(A@)u, X) : X € T,,M} = {0} x T,, M.
In that case the horizontal distribution is integrable.
Assume FV is integrable. Let ¢ C M and 0 =] — 1,1[*C M. Let X; = % the
coordinate vector fields. Let Y; be the horizontal lifts of X;, let gofl the flow of X; and 1/)%
the flow of Y;.

Lemma 12.4. [Y;,Y;] =0 (iff i 0¢g = ¢§ o).

Let uw € &, let N © u be the submanifold such that Vn € N, T,,N = fnv. Hence
Vn € N, T'r is an isomorphism from 7, N to T ,)M. We can find an open set & > n in
N such that 7 : ¢ — 7(0) is a diffeomorphism (local immersion theorem). From now on,
redefine N = O. Set Y; = Yiln,

77*[}717?]] = [W*?iﬂr*?j] = [Xi, X;] = 0.

This means that T7([Y;,Y;]) = 0, hence that [V;,Y;] = 0 (since 7|y is a diffecomorphism).
Y, Yl = [}71, }73]“ because N is a submanifold and Y; tangent to N.

Lemma 12.5. If W a submanifold of M. If X,Y are vector fields on M, such that
X, Y € TuyW forw e W, then [X,Y]|lw = [X|w,Y|w] (Hint: use a chart).

Proof. Since W is a submanifold of M, for w € W C M, there is a chart (U, ¢) such that
©(UNM)CRFCR™ Set X = Xia%i and Y = Y]d%] Since X (w) and Y (w) is in T, W
for w € M, we know that Xj11(w) = -+ = Xp(w) =0 and Yy (w) = - = Yo (w) =0
for any w € W.

[X,Y] = <Xian —Y;

a’L'Z' ! 8.%

8Xj) f — (X(¥) — Y(X))) 8‘9

For j > k + 1, since Yj|w = 0 and X (w) € T, W for any w € W, we have X (Y;)(w) = 0.
Ditto for Y'(X;)(w) =0, j > k+ 1. Hence we’ve proved that

X V] = 3 (X)) - V(X)) - € TLW,

1<5<k O

Yw € W. Note that X[y = Y X;32 and Y|y = 3 Yiz2 and [X|w,Y|w] =
1<j<k ‘ 1<j<k ‘

(X, Ylw. O

Back to original proof. Set & = x| — 1, 1[", we define the trivialization & x & 2 Elo
by ®(u,t1, -+ tn) = (Y7, 0+ 01y, ) (u).
We will prove that (i) @ is linear, in particular, ®~! is a trivialization. (ii) Given a
curve c(s) in O, u € & then ®(u,c(s)) is horizontal.
We first prove (ii).
c(8) = (Piy () © - 0 1 (5) (0)-
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u(s) == ®(u,c(s wl "'O@Z’ZL(S))(“)-

u(t) = > ti(s)Yi(u(s)). Indeed, we can put ¢, in
the first place for W (See Proposition 10.6).

From Lemma 12.3, ﬂ'U(S) = c(s). du}t U

Now we have proved that s +— ®(u, c(s)) is horizontal. u — ®(u,c(s0)) = Holy(sy)(u)
is linear. Now FY = {(0,X) : X € TM} hence V is flat. O

Definition 12.8. Given V a connection on w : € — M, the curvature tensor x(M) X
X(M) x T(€) = T(€) by

RY(X,Y)o = VxVyo — VyVxo — Vixy|0.

Lemma 12.6. (i) R(X,Y)o =—-R(Y,X)o.
(i) R(fX,Y)o = fR(X,Y)o, for f € C®M.
(iii) R(X,Y)fo = fR(X,Y)o, for f € C*M.

Corollary 12.2. Given V, there exists RY € Q?(M,End(£)) such that
(RY(X,Y)0)m = (R )m(Xom, Ym)om
In a trivialization, €|y = E x U and V = D + A.
Lemma 12.7. RV(X,Y)o = dA(X,Y)o + [A(X), A(Y)]o.

Proof.
RY(X,Y)o =VxVyo - VyVxo — Vix,y|o-

V[Xy]O' = L[X’y}O' + A([X,Y])o.
VxVyo = Vx(DU(Y) + A(Y)U)

= Vx(LyO') + (LxA(Y))O' + A(Y)an
= LxLyo+ A(X)Lyo ++(LxA(Y))o + A(Y)Lxo + A(X)A(Y)o

Similarly,
VyVxo=LyLxo+ A(Y)Lxo+ +(LyA(X))o + A(X)Lyo + A(Y)A(X)o.

With the fact, if w € Q1(M), then dw(X,Y) = Lx(w(Y)) — Ly (w(X)) — w([X,Y]),

we’ve done the proof. O
Theorem 12.5. V is flat, iff RV = 0.

Proof. If V is flat, then A = 0 hence RY = 0.
If RY =0, show that FV is integrable. Let X; = % be coordinate vector fields on V'
and Y; be the horizontal lift.
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Lemma 12.8. If RV =0, then [Y;,Y;] = 0.

Consequence FV is integrable and thus V flat.

Vi, Yilu = [(— AX) - u, X0), (= A(X;) - u, X5)]

_ (_(;iiA(Xj)u + (%A(Xi)u — [A(X:), A(X;)ul,0)

(—=dA(Xi, Xj)u — [A(Xi), A(X;)]u, 0)
(—RV(XZ‘, Xj)u, 0)

Here we use the fact [Au, Bu] = —[A, Blu (See Exercise 10.4).

Theorem 12.6. If V is flat, if c(t) is homotopic to é(t) with fived endpoints, then
Hol. = Hol; : gc(O) — 50(1).
Let £ be a R-vector bundle with a connection V.

BY (X1, Xae) = Y (1) Tr (RY(Xo(1), X)) - RY (Xo(ah—1)» Xo(ar)))

€Sy

Let £ be a C-vector bundle, J € v(£) such that J? = —1.

&Y (Xa, -, Xop) = Y (=17 Tr (RY(Xo(1), Xog2) - RY (Xo(2p-1)s Xoaw))

€Sk

Theorem 12.7. The forms P,y and ékv are closed (called Pontryagin, Chern classes).
Their cohomology classes [PY] € H* (M) and [¢Y] € H?*(M) only depends on £ are
called the Pontryagin class and the Chern class.

Example 12.3. TS? has complex structure and c1(TS?) # 0. Hence TS? is not trivial.
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13 Group action

13.1 Properly discontinuous action without fixed points

A covering is a map p: X — Y, where X and Y are topological spaces, such that for any

y € Y, there exists U € V(y) such that p~1(U) = || O, where O, are open sets and
z€Z
p: O, = U is a homeomorphism.

If " is a group acting on X, with a properly discontinuous action without fixed
points that

(i) Vy €I, v : & — vz is a diffeomorphism (homeomorphism).

(ii) Vx € X, there exists U € V(x), such that yU NU # @ will indicate v = id.

Remark 13.1. properly discontinuous action.

For every compact set K, #{v: vyK N K # @} < co.

Theorem 13.1. In topology category, there is a topology on T'\X, such that p: X — I'\X

18 a4 COVering.

Proof. Recall the quotient topology on I'\ X is give by U is an open set in I'\ X if p~1(U)
is open.

We define U, := v - U which is an open set and U, N Uy = @ if v # 7.

We want to show p is covering: for any y € T'\ X, there exists V' € V(y) such that

p ' (V)= |] Vs and p: V, — V is a homeomorphism.
z€Z
Let y € T'\X, let x such that p(z) = y. Let U € V(x) such that v # +' in T,

U,NUy, =@. Let V =p(U), then

) = o) = | U,
yer
is an open set hence V is open in I'\ X. Indeed, let z € p~(p(U)), p(z) € V = p(U), then
p(2) is an orbit {ya}aer which intersects U with a € U.
Then we also need to check that p : U, — V is a homeomorphism. It is obvious that
this map is bijective and continuous. We only need to show that p|5w1 is continuous, which

is similar to the proof of the openness of V. O
Remark 13.2. We say U is good if U is an open set in X such that ¥y # id, yUNU = @.

Theorem 13.2. In differential geometry category, there is a manifold structure on I'\ X,

such that p : X — I'\X is a covering, p is smooth and a local diffeomorphism.

Proof. X is o-compact then I"'\ X is o-compact.
We can find an atlas {(U;, ¢;)} of X such that U; are good. Because U; is good: U; —
p(U;) is a homeomorphism. We define charts of T\ X by {(V; = p(U;), ¢iop; ' = p\ﬁ}} It

remains to prove these charts are compatible.
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For any y € I'\X, and y € V; NV}, we say z; = pfl(y) and x; = p}l(y). notice that
x; may not equal to x;, but we have an element « € I' such that z; = yx;. The transition
map is

_ —1\—1 _ _ _
(pjop;)o(giop ') =¢jop; opiod;t =djovod;

around y, hence differential. O
Exercise 13.1. Check I'\X s Hausdorff.

Exercise 13.2. T" is a finite group and X is compact, show that if for any v € I'\id, and

for any x, we have vyx # x, then I' acts properly discontinuously on X.

Example 13.1. I' =Z/2Z = {—1,1}. T acts on S = {u € R: |lul]| = 1}. T\S™ is P™.

13.2 Action of group of diffeomorphisms

Theorem 13.3. Let M be a connected manifold. Let ¢ = {diffeomorphism of M }. For
allp e N, & acts transitively on MP* := {(mq,--- ,mp) : Vi # j,m; # m;}.

That is, given (mq,---,myp), (g1, -+ ,qp) € MP*, then there is a diffeomorphism ¢ of
M such that p(m;) = ¢; for any 1 < i < p.

1. Show that if B is the open ball in R™. Given = € B, there is a 0 € V(x), for any
y € O, there is ¢ a diffecomorphism of B such that (i) p(z) = y and (ii) ¢ is an
identity on a neighborhood on 0B".

For o(z) = y we first define the transition map ¢o(z) = z + u, where u =y — x

small enough.

Let ¥ be the function such that 4 is 1 on a neighborhood of x and 0 on a neigh-
borhood of 9B™. We define ¢(z) = z + ¢(2)u.

Since D,y = I +uAy ., for u small enough, D, is non-singular. Hence ¢ is local

diffeomorphism.

Now we prove that for u small enough, ¢ is injective. If p(z1) = ¢(z2), i.e.
21+ (z1)u = 2o+ (22)u. We know that there exists Ky such that 1 is Ko-Lipschitz,
that is

9p(21) = (22)] < Kollz1 — |-

1

Then we just need to choose ||ul| < 57-.

Since ¢ is local diffeomorphism and injective, we say it is a diffeomorphism.

We can only say that ¢ : B — ¢(B) is a diffeomorphism. We also need to prove

that ¢ is surjective. We can prove it by flow of diffeomorphism. xxx.

2. Let us fix m = (mq,--- ,my) € MP*,
G ={(q1, -+ ,qp) € MP* : Jp diffeomorphism such that ¢(m;) = ¢;}.
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Actually 9, is just an orbit of ¢4. We will prove ¥, is open.
For any i, let 0; be a neighborhood of ¢; such that

() oino;ifi+j.

(ii) &; is diffeomorphism to a ball.

(iii) Let U; C O; with the following property. For any z; € Uj, there is a
diffeomorphism ¢; such that ¢;(¢;) = z; and ; is the identity on neighborhood %;
of 00;.

Let ¢ : M — M defined by ¢ = ¢; on 0; and ¢ =id on M \ U(0; \ ¥;). Then ¢
is a diffeomorphism.

Now we’ve proved that for any (g1, - ,qy) € On, there is a neighborhood Uy x

- x U, C MP*, for any z; € U; there is a diffecomorphism ) such that ¢(g;) = z;.
Since (g1, ,4qp) € %m, there is ¢ such that ¢(m;) = ¢;, hence 1 o p(m;) = z;, i.e.
(21, 1 2p) € Y.

3. 9, is closed. Note that what we’ve proved is that every orbit of 4 on MP* is open.
Then
G =M™\ | ] 9,
q¢YGm

4. We will show that for dim M > 2, MP* is connected. Hence ¥, = MP*.

Example 13.2. Counter example for M not connected.
Set M = S? UR?, the diffeomorphism group is not transitive. Since a diffeomorphism
group sends a connected component to a connected component and a compact set to compact

set. Then a point in S? can only be mapped into S?.
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